Vieira-Vieira Carlos Henrique, Kulkarni Sarang Sanjay, Zalewski Adam, Löffler Jobst, Münch Jonas, Kreuchwig Annika
Bayer Research and Development, Pharmaceuticals, Preclinical Development, Berlin, Germany.
Thoughtworks Technologies (India) Private Ltd., Pune, India.
Front Artif Intell. 2025 Aug 19;8:1636809. doi: 10.3389/frai.2025.1636809. eCollection 2025.
The pharmaceutical industry faces pressure to improve the drug development process while reducing costs in an evolving regulatory landscape. This paper presents the Preclinical Information Center (PRINCE), a cloud-hosted data integration platform developed by Bayer AG in collaboration with Thoughtworks. PRINCE integrates decades of structured and unstructured safety study reports, leveraging a multi-agent architecture based on Large Language Models (LLMs) and advanced data retrieval methodologies, such as Retrieval-Augmented Generation and Text-to-SQL. In this paper, we describe the three-step evolution of PRINCE from a data search tool based on keyword matching to a resourceful research assistant capable of answering complex questions and drafting regulatory-critical documents. We highlight the iterative development process, guided by user feedback, that ensures alignment with evolving research needs and maximizes utility. Finally, we discuss the importance of building trust-based solutions and how transparency and explainability have been integrated into PRINCE. In particular, the integration of a human-in-the-loop approach enhances the accuracy and retains human accountability. We believe that the development and deployment of the PRINCE chatbot demonstrate the transformative potential of AI in the pharmaceutical industry, significantly improving data accessibility and research efficiency, while prioritizing data governance and compliance.
在不断演变的监管环境中,制药行业面临着既要改进药物研发流程又要降低成本的压力。本文介绍了临床前信息中心(PRINCE),这是拜耳公司与Thoughtworks合作开发的一个云托管数据集成平台。PRINCE整合了数十年的结构化和非结构化安全研究报告,利用基于大语言模型(LLMs)的多智能体架构以及先进的数据检索方法,如检索增强生成和文本到SQL。在本文中,我们描述了PRINCE从基于关键词匹配的数据搜索工具到能够回答复杂问题并起草监管关键文件的智能研究助手的三步演变过程。我们强调了在用户反馈指导下的迭代开发过程,该过程确保与不断变化的研究需求保持一致并最大化效用。最后,我们讨论了构建基于信任的解决方案的重要性以及透明度和可解释性如何被融入PRINCE。特别是,人在回路方法的整合提高了准确性并保留了人的问责制。我们相信PRINCE聊天机器人的开发和部署展示了人工智能在制药行业的变革潜力,显著提高了数据可及性和研究效率,同时优先考虑数据治理和合规性。