Suppr超能文献

从器官到算法:人工智能时代癌症分类的重新定义。

From organs to algorithms: Redefining cancer classification in the age of artificial intelligence.

机构信息

CEO Roundtable on Cancer, Morrisville, North Carolina, USA.

Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.

出版信息

Clin Transl Sci. 2024 Sep;17(9):e70001. doi: 10.1111/cts.70001.

Abstract

Traditional cancer classification based on organ of origin and histology is increasingly at odds with precision oncology. Tumors in different organs can share molecular features, while those in the same organ can be heterogeneous. This disconnect impacts clinical trials, drug development, and patient care. Recent advances in artificial intelligence (AI), particularly machine learning and deep learning, offer promising avenues for reclassifying cancers through comprehensive integration of molecular, histopathological, imaging, and clinical characteristics. AI-driven approaches have the potential to reveal novel cancer subtypes, identify new prognostic variables, and guide more precise treatment strategies for improving patient outcomes.

摘要

传统的基于起源器官和组织学的癌症分类方法与精准肿瘤学越来越不一致。不同器官的肿瘤可以具有共同的分子特征,而同一器官的肿瘤则可能具有异质性。这种脱节影响了临床试验、药物开发和患者护理。人工智能(AI),特别是机器学习和深度学习的最新进展,为通过全面整合分子、组织病理学、影像学和临床特征来重新分类癌症提供了有前途的途径。人工智能驱动的方法有可能揭示新的癌症亚型,确定新的预后变量,并指导更精确的治疗策略,以改善患者的预后。

相似文献

3
Artificial intelligence in oncology.
Cancer Sci. 2020 May;111(5):1452-1460. doi: 10.1111/cas.14377. Epub 2020 Mar 21.
4
Artificial Intelligence for Precision Oncology.
Adv Exp Med Biol. 2022;1361:249-268. doi: 10.1007/978-3-030-91836-1_14.
5
Emerging role of deep learning-based artificial intelligence in tumor pathology.
Cancer Commun (Lond). 2020 Apr;40(4):154-166. doi: 10.1002/cac2.12012. Epub 2020 Apr 11.
7
Precision Medicine Approaches with Metabolomics and Artificial Intelligence.
Int J Mol Sci. 2022 Sep 24;23(19):11269. doi: 10.3390/ijms231911269.
8
Current status and future trends of clinical diagnoses via image-based deep learning.
Theranostics. 2019 Oct 12;9(25):7556-7565. doi: 10.7150/thno.38065. eCollection 2019.
9
Artificial Intelligence for the Management of Breast Cancer: An Overview.
Curr Drug Discov Technol. 2024;21(4):e031123223115. doi: 10.2174/0115701638262066231030052520.
10
Deep learning in cancer diagnosis, prognosis and treatment selection.
Genome Med. 2021 Sep 27;13(1):152. doi: 10.1186/s13073-021-00968-x.

引用本文的文献

1
Mapping cancer heterogeneity: a consensus network approach to subtypes and pathways.
Brief Bioinform. 2025 Aug 31;26(5). doi: 10.1093/bib/bbaf452.
3
Recent advances and challenges in colorectal cancer: From molecular research to treatment.
World J Gastroenterol. 2025 Jun 7;31(21):106964. doi: 10.3748/wjg.v31.i21.106964.
4
Subtypes detection of papillary thyroid cancer from methylation assay via Deep Neural Network.
Comput Struct Biotechnol J. 2025 Apr 29;27:1809-1817. doi: 10.1016/j.csbj.2025.04.034. eCollection 2025.
5
Pathology in the artificial intelligence era: Guiding innovation and implementation to preserve human insight.
Acad Pathol. 2025 Feb 28;12(1):100166. doi: 10.1016/j.acpath.2025.100166. eCollection 2025 Jan-Mar.

本文引用的文献

1
A deep-learning framework to predict cancer treatment response from histopathology images through imputed transcriptomics.
Nat Cancer. 2024 Sep;5(9):1305-1317. doi: 10.1038/s43018-024-00793-2. Epub 2024 Jul 3.
2
AI-based histopathology image analysis reveals a distinct subset of endometrial cancers.
Nat Commun. 2024 Jun 26;15(1):4973. doi: 10.1038/s41467-024-49017-2.
3
A pathologist-AI collaboration framework for enhancing diagnostic accuracies and efficiencies.
Nat Biomed Eng. 2025 Apr;9(4):455-470. doi: 10.1038/s41551-024-01223-5. Epub 2024 Jun 19.
5
Pan-cancer computational histopathology reveals mutations, tumor composition and prognosis.
Nat Cancer. 2020 Aug;1(8):800-810. doi: 10.1038/s43018-020-0085-8. Epub 2020 Jul 27.
6
Artificial intelligence for diagnosis and Gleason grading of prostate cancer: the PANDA challenge.
Nat Med. 2022 Jan;28(1):154-163. doi: 10.1038/s41591-021-01620-2. Epub 2022 Jan 13.
7
Radiological tumor classification across imaging modality and histology.
Nat Mach Intell. 2021 Sep;3:787-798. doi: 10.1038/s42256-021-00377-0. Epub 2021 Aug 9.
8
Long-term cancer survival prediction using multimodal deep learning.
Sci Rep. 2021 Jun 29;11(1):13505. doi: 10.1038/s41598-021-92799-4.
9
Interobserver agreement issues in radiology.
Diagn Interv Imaging. 2020 Oct;101(10):639-641. doi: 10.1016/j.diii.2020.09.001. Epub 2020 Sep 18.
10
An image-based deep learning framework for individualizing radiotherapy dose.
Lancet Digit Health. 2019 Jul;1(3):e136-e147. doi: 10.1016/S2589-7500(19)30058-5. Epub 2019 Jun 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验