Suppr超能文献

从器官到算法:人工智能时代癌症分类的重新定义。

From organs to algorithms: Redefining cancer classification in the age of artificial intelligence.

机构信息

CEO Roundtable on Cancer, Morrisville, North Carolina, USA.

Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.

出版信息

Clin Transl Sci. 2024 Sep;17(9):e70001. doi: 10.1111/cts.70001.

Abstract

Traditional cancer classification based on organ of origin and histology is increasingly at odds with precision oncology. Tumors in different organs can share molecular features, while those in the same organ can be heterogeneous. This disconnect impacts clinical trials, drug development, and patient care. Recent advances in artificial intelligence (AI), particularly machine learning and deep learning, offer promising avenues for reclassifying cancers through comprehensive integration of molecular, histopathological, imaging, and clinical characteristics. AI-driven approaches have the potential to reveal novel cancer subtypes, identify new prognostic variables, and guide more precise treatment strategies for improving patient outcomes.

摘要

传统的基于起源器官和组织学的癌症分类方法与精准肿瘤学越来越不一致。不同器官的肿瘤可以具有共同的分子特征,而同一器官的肿瘤则可能具有异质性。这种脱节影响了临床试验、药物开发和患者护理。人工智能(AI),特别是机器学习和深度学习的最新进展,为通过全面整合分子、组织病理学、影像学和临床特征来重新分类癌症提供了有前途的途径。人工智能驱动的方法有可能揭示新的癌症亚型,确定新的预后变量,并指导更精确的治疗策略,以改善患者的预后。

相似文献

3
Artificial intelligence in oncology.肿瘤学中的人工智能。
Cancer Sci. 2020 May;111(5):1452-1460. doi: 10.1111/cas.14377. Epub 2020 Mar 21.
4
Artificial Intelligence for Precision Oncology.人工智能在精准肿瘤学中的应用。
Adv Exp Med Biol. 2022;1361:249-268. doi: 10.1007/978-3-030-91836-1_14.
9
Artificial Intelligence for the Management of Breast Cancer: An Overview.人工智能在乳腺癌管理中的应用:综述。
Curr Drug Discov Technol. 2024;21(4):e031123223115. doi: 10.2174/0115701638262066231030052520.

本文引用的文献

7
Radiological tumor classification across imaging modality and histology.跨成像模态和组织学的放射学肿瘤分类。
Nat Mach Intell. 2021 Sep;3:787-798. doi: 10.1038/s42256-021-00377-0. Epub 2021 Aug 9.
9
Interobserver agreement issues in radiology.放射学中的观察者间一致性问题。
Diagn Interv Imaging. 2020 Oct;101(10):639-641. doi: 10.1016/j.diii.2020.09.001. Epub 2020 Sep 18.
10
An image-based deep learning framework for individualizing radiotherapy dose.基于图像的深度学习个体化放疗剂量框架。
Lancet Digit Health. 2019 Jul;1(3):e136-e147. doi: 10.1016/S2589-7500(19)30058-5. Epub 2019 Jun 27.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验