CEO Roundtable on Cancer, Morrisville, North Carolina, USA.
Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
Clin Transl Sci. 2024 Sep;17(9):e70001. doi: 10.1111/cts.70001.
Traditional cancer classification based on organ of origin and histology is increasingly at odds with precision oncology. Tumors in different organs can share molecular features, while those in the same organ can be heterogeneous. This disconnect impacts clinical trials, drug development, and patient care. Recent advances in artificial intelligence (AI), particularly machine learning and deep learning, offer promising avenues for reclassifying cancers through comprehensive integration of molecular, histopathological, imaging, and clinical characteristics. AI-driven approaches have the potential to reveal novel cancer subtypes, identify new prognostic variables, and guide more precise treatment strategies for improving patient outcomes.
传统的基于起源器官和组织学的癌症分类方法与精准肿瘤学越来越不一致。不同器官的肿瘤可以具有共同的分子特征,而同一器官的肿瘤则可能具有异质性。这种脱节影响了临床试验、药物开发和患者护理。人工智能(AI),特别是机器学习和深度学习的最新进展,为通过全面整合分子、组织病理学、影像学和临床特征来重新分类癌症提供了有前途的途径。人工智能驱动的方法有可能揭示新的癌症亚型,确定新的预后变量,并指导更精确的治疗策略,以改善患者的预后。