Suppr超能文献

一种基于Transformer且带有数据增强的框架,用于跨侵入性和非侵入性神经记录进行稳健的癫痫发作检测。

A Transformer-Based Framework With Data Augmentation for Robust Seizure Detection Across Invasive and Noninvasive Neural Recordings.

作者信息

Yuan Yue, Zhang Junyang, Wang Chen, Yan Hao, Ye Xiangyu, Ruan Wenjun, Teng Xinzhuo, Guo Zheshan, Wang Zhaoxiang

机构信息

Research Center for Life Sciences Computing, Zhejiang Lab, Hangzhou, Zhejiang, China.

State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Haikou, Hainan, China.

出版信息

CNS Neurosci Ther. 2025 Sep;31(9):e70584. doi: 10.1111/cns.70584.

Abstract

AIMS

Epilepsy affects more than 50 million peolple worldwide and requires reliable seizure detection systems to mitigate risks associated with unpredictable seizures. Existing machine learning frameworks are limited in generalizability, signal fidelity, and clinical translation, particularly when bridging invasive and non-invasive modalities. This study aims to develop a robust and generalizable seizure detection model capable of supporting cross-modal applicability.

METHODS

We proposed a Transformer-based seizure detection framework designed for end-to-end analysis of raw neurophysiological signals. To address class imbalance and temporal variability, three data augmentation strategies: sequential sampling, random contiguous sampling, and random non-contiguous sampling, were implemented. A channel-agnostic attention mechanism was incorporated to ensure robustness across heterogeneous electrode configurations.

RESULTS

The framework achieved > 99% accuracy in detecting diverse seizure patterns from rat hippocampal recordings (CA1/CA3) and maintained strong performance across different epilepsy models (PTX- and 4-AP-induced seizures). It also demonstrated resilience under reduced-channel configurations (F1-score: 98.7% with 2 channels). In human electroencephalography (EEG) validation, the model achieved a recall of 99.1% and an overall accuracy of 90.4%, despite the inherent limitations of EEG in resolving high-frequency oscillations and its susceptibility to artifacts.

CONCLUSION

By eliminating manual feature engineering and enabling robust cross-modal adaptation, this framework bridges invasive experimental research and non-invasive clinical practice. Its efficiency and scalability support potential applications in real-time seizure monitoring and closed-loop neuromodulation systems. Future work will focus on integration with hemodynamic biomarkers, validation in chronic epilepsy models, and optimization for wearable and real-time deployment.

摘要

目的

癫痫影响着全球超过5000万人,需要可靠的癫痫发作检测系统来降低与不可预测的癫痫发作相关的风险。现有的机器学习框架在通用性、信号保真度和临床转化方面存在局限性,尤其是在连接侵入性和非侵入性模式时。本研究旨在开发一种强大且通用的癫痫发作检测模型,能够支持跨模式适用性。

方法

我们提出了一种基于Transformer的癫痫发作检测框架,用于对原始神经生理信号进行端到端分析。为了解决类别不平衡和时间变异性问题,实施了三种数据增强策略:顺序采样、随机连续采样和随机非连续采样。引入了一种与通道无关的注意力机制,以确保在异构电极配置下的鲁棒性。

结果

该框架在从大鼠海马记录(CA1/CA3)中检测不同癫痫发作模式时准确率>99%,并在不同癫痫模型(PTX和4-AP诱导的癫痫发作)中保持了强大的性能。它在减少通道配置下也表现出弹性(F1分数:2通道时为98.7%)。在人类脑电图(EEG)验证中,尽管EEG在解析高频振荡方面存在固有局限性且易受伪影影响,但该模型的召回率达到99.1%,总体准确率达到90.4%。

结论

通过消除人工特征工程并实现强大的跨模式适应性,该框架架起了侵入性实验研究和非侵入性临床实践之间的桥梁。其效率和可扩展性支持在实时癫痫发作监测和闭环神经调节系统中的潜在应用。未来的工作将集中在与血液动力学生物标志物的整合、在慢性癫痫模型中的验证以及针对可穿戴和实时部署的优化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a167/12409473/af4d6778b499/CNS-31-e70584-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验