Suppr超能文献

基于 Transformer 和长程 iEEG 的连续癫痫发作检测

Continuous Seizure Detection Based on Transformer and Long-Term iEEG.

出版信息

IEEE J Biomed Health Inform. 2022 Nov;26(11):5418-5427. doi: 10.1109/JBHI.2022.3199206. Epub 2022 Nov 10.

Abstract

Automatic seizure detection algorithms are necessary for patients with refractory epilepsy. Many excellent algorithms have achieved good results in seizure detection. Still, most of them are based on discontinuous intracranial electroencephalogram (iEEG) and ignore the impact of different channels on detection. This study aimed to evaluate the proposed algorithm using continuous, long-term iEEG to show its applicability in clinical routine. In this study, we introduced the ability of the transformer network to calculate the attention between the channels of input signals into seizure detection. We proposed an end-to-end model that included convolution and transformer layers. The model did not need feature engineering or format transformation of the original multi-channel time series. Through evaluation on two datasets, we demonstrated experimentally that the transformer layer could improve the performance of the seizure detection algorithm. For the SWEC-ETHZ iEEG dataset, we achieved 97.5% event-based sensitivity, 0.06/h FDR, and 13.7 s latency. For the TJU-HH iEEG dataset, we achieved 98.1% event-based sensitivity, 0.22/h FDR, and 9.9 s latency. In addition, statistics showed that the model allocated more attention to the channels close to the seizure onset zone within 20 s after the seizure onset, which improved the explainability of the model. This paper provides a new method to improve the performance and explainability of automatic seizure detection.

摘要

自动癫痫发作检测算法对于耐药性癫痫患者来说是必要的。许多优秀的算法在癫痫发作检测方面取得了良好的效果。然而,它们大多基于不连续的颅内脑电图(iEEG),忽略了不同通道对检测的影响。本研究旨在使用连续的、长期的 iEEG 来评估所提出的算法,以展示其在临床常规中的适用性。在这项研究中,我们将变压器网络计算输入信号通道之间注意力的能力引入到癫痫发作检测中。我们提出了一个端到端的模型,包括卷积层和变压器层。该模型不需要对原始多通道时间序列进行特征工程或格式转换。通过对两个数据集的评估,我们实验证明了变压器层可以提高癫痫发作检测算法的性能。对于 SWEC-ETHZ iEEG 数据集,我们实现了基于事件的敏感性为 97.5%,假阳性率(FDR)为 0.06/h,潜伏期为 13.7 s。对于 TJU-HH iEEG 数据集,我们实现了基于事件的敏感性为 98.1%,假阳性率(FDR)为 0.22/h,潜伏期为 9.9 s。此外,统计数据表明,该模型在癫痫发作开始后 20 s 内,向距离癫痫发作起始区较近的通道分配了更多的注意力,提高了模型的可解释性。本文提供了一种提高自动癫痫发作检测性能和可解释性的新方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验