Wang Wenbiao, Bai Fan, Chu Kaibin, Cai Meiqing, Xu Xiangya, Guo Zifang, Zhang Ximin, Qin Jingjing, Huang Youbing, Song Jun-Ling
International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Lihu Street 1800, Wuxi, 214122, P.R. China.
SINOPEC Beijing Research Institute of Chemical Industry, Beijing, 100013, P.R. China.
Angew Chem Int Ed Engl. 2025 Sep 4:e202514438. doi: 10.1002/anie.202514438.
Electrocatalytic coupling of nitrate reduction (NORR) to ammonia with 5-hydroxymethylfurfural (HMF) oxidation to 2,5-furandicarboxylic acid (FDCA) enables simultaneous wastewater remediation and biomass valorization. However, developing efficient bifunctional electrocatalysts for these multiproton-coupled electron transfer reactions remains challenging as conventional single-active-site catalysts inherently suffer from linear scaling relationships between intermediates and adsorption energies, particularly sluggish proton transfer. To address this, we engineered a triphasic N-doped CuO@CoO@Ni(OH) heterostructure with a gradient built-in electric field (BIEF), which synergistically enhances interfacial charge polarization and accelerates proton transport through dynamic coupling effects in both reactions: sufficient *H supply for NORR and fast Ni(OH)/NiOOH redox cycling during HMF oxidation (HMFOR), thus achieving unprecedented bifunctional performance: at - 0.4 V versus RHE, Faradaic efficiency (FE) for NH reaches 96.49% with a yield rate of 45.36 mg h cm; under 1.53 V versus RHE, the FDCA FE achieves 95.23% with a yield of 95.24%. The bifunctional design reduces energy consumption by 31.39% at 10 mA cm in a NORR||HMFOR flow electrolyzer compared to traditional electrolytic water splitting. A rechargeable Zn-NO /HMF battery shows 70-280 mV lower charging potential with exceptional cycling stability (>450 cycles). This work provides a new design paradigm for bifunctional electrocatalysts in sustainable energy conversion and waste valorization.
将硝酸盐还原(NORR)为氨与5-羟甲基糠醛(HMF)氧化为2,5-呋喃二甲酸(FDCA)的电催化偶联能够实现废水修复和生物质增值的同时进行。然而,开发用于这些多质子耦合电子转移反应的高效双功能电催化剂仍然具有挑战性,因为传统的单活性位点催化剂固有地存在中间体与吸附能之间的线性标度关系,尤其是质子转移缓慢。为了解决这一问题,我们设计了一种具有梯度内建电场(BIEF)的三相N掺杂CuO@CoO@Ni(OH)异质结构,其通过两种反应中的动态耦合效应协同增强界面电荷极化并加速质子传输:为NORR提供充足的*H供应,并在HMF氧化(HMFOR)过程中实现快速的Ni(OH)/NiOOH氧化还原循环,从而实现了前所未有的双功能性能:相对于可逆氢电极(RHE)在-0.4 V时,NH的法拉第效率(FE)达到96.49%,产率为45.36 mg h cm;相对于RHE在1.53 V时,FDCA的FE达到95.23%,产率为95.24%。与传统的电解水分解相比,这种双功能设计在NORR||HMFOR流动电解槽中在10 mA cm下可将能耗降低31.39%。可充电的Zn-NO/HMF电池显示出充电电位低70 - 280 mV,具有出色的循环稳定性(>450次循环)。这项工作为可持续能源转换和废物增值中的双功能电催化剂提供了一种新的设计范例。