Kaufman Yehonatan, Neumann Ronny
Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel.
Inorg Chem. 2025 Sep 15;64(36):18365-18375. doi: 10.1021/acs.inorgchem.5c02816. Epub 2025 Sep 4.
The low-temperature oxidation of alkanes and arenes using molecular oxygen under ambient conditions is still one of the grand challenges of catalysis. Inspired by the alkane hydroxylation activity of the copper-based metalloenzyme, particulate methane monooxygenase, a tetra-copper polyoxometalate, [Cu(HO)(PWO)], was investigated as an electrocatalyst for the cathodic (reductive) oxidation of hydrocarbons with emphasis on oxidation of ethane. Controlled potential electrolysis (CPE) in water at -0.45 V versus NHE showed the formation of ethanol, acetaldehyde, and then acetic acid. Divided cell CPE confirmed that oxidation of ethane to ethanol occurs only at the cathode, while further oxidation can occur at the cathode and anode. Experiments using a chemical reductant O and halides confirmed the formation of an active species at the cathode. Different combinations of redox-active copper and redox-inactive zinc within the polyoxometalate framework demonstrate that the O activation probably requires three copper atoms. The use of kinetic isotope effects and probe molecules indicates a rebound mechanism for aliphatic substrates and an electrophilic species for oxidation of arenes. The transformation of ethane to either ethanol or acetic acid is an important transformation, especially in scenarios where ethane is not recovered from natural gas.
在环境条件下使用分子氧对烷烃和芳烃进行低温氧化仍然是催化领域的重大挑战之一。受铜基金属酶颗粒甲烷单加氧酶的烷烃羟基化活性启发,研究了一种四铜多金属氧酸盐[Cu(HO)(PWO)]作为烃类阴极(还原)氧化的电催化剂,重点是乙烷的氧化。相对于标准氢电极(NHE)在-0.45 V的水中进行控制电位电解(CPE),结果表明形成了乙醇、乙醛,然后是乙酸。分隔式电解槽CPE证实,乙烷氧化为乙醇仅在阴极发生,而进一步氧化可在阴极和阳极发生。使用化学还原剂O和卤化物的实验证实了阴极活性物种的形成。多金属氧酸盐框架内氧化还原活性铜和氧化还原惰性锌的不同组合表明,O活化可能需要三个铜原子。动力学同位素效应和探针分子的使用表明脂肪族底物的反应机理为回弹机理,芳烃氧化的反应机理为亲电物种。乙烷转化为乙醇或乙酸是一个重要的转化过程,特别是在乙烷无法从天然气中回收的情况下。