Suppr超能文献

生物启发的铜导向C-H羟基化反应的最新进展

Recent Advances in Bioinspired Cu-Directed C-H Hydroxylation Reactions.

作者信息

Goswami Sunipa, Garcia-Bosch Isaac

机构信息

Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States.

出版信息

Acc Chem Res. 2025 Aug 27. doi: 10.1021/acs.accounts.5c00476.

Abstract

ConspectusCu-dependent metalloenzymes catalyze a wide array of oxidative transformations using O as an oxidant under mild conditions. These include the hydroxylation of challenging organic substrates (e.g., oxidation of methane to methanol in particulate methane monooxygenase) and the regio- and enantioselective hydroxylation of complex molecules (e.g., benzylic hydroxylation of dopamine to noradrenaline in dopamine-β-monooxygenase). Lytic polysaccharide monooxygenase enzymes (LPMOs) promote the C-H hydroxylation and subsequent cleavage of the polysaccharide chains found in natural materials such as cellulose or chitin. Recent reports on the reactivity of LPMOs suggest that, instead of O, these Cu-dependent metalloenzymes utilize HO as an oxidant. In 2015, our research lab reported that the catalytic hydroxylation of strong C-H bonds (e.g., cyclohexane) using Cu and HO proceeded via formation of nonselective Fenton-like oxidants (hydroxyl and hydroperoxyl radicals). To achieve regioselectivity, LPMOs bind the organic substrate before exposing the Cu center to the oxidant, a reaction that leads to the formation of a highly organized ternary complex prior to substrate hydroxylation (i.e., metal-substrate-oxidant adduct). Based on this concept, our research lab has pioneered the use of Cu, directing groups, and green oxidants to promote the site-selective hydroxylation of ketones and aldehydes. In our first report on this topic, we carried out an extensive mechanistic analysis on the Cu-directed sp C-H hydroxylation reactions developed by Schönecker and co-workers. Our findings suggested that the reaction between Cu and O did not lead to the formation of dinuclear CuO (as it was previously suggested) but produced Cu and HO, which generated mononuclear Cu-hydroperoxide oxidants. Based on our mechanistic analysis, we redesigned the reaction conditions to utilize Cu and HO, which improved the yield, cost, and practicability of the Schönecker oxidations. Since then, our research lab has broadened the scope of substrates that can be oxidized using Cu, HO, and bidentate directing groups to include the γ-hydroxylation of sp C-H bonds and β-hydroxylation of sp C-H bonds. Our latest reports have focused on the regioselective hydroxylation of substituted unsymmetrical benzophenones (which occurred via the formation of an electrophilic CuOOH species) and, for the first time, enantioselective C-H hydroxylation reactions via the formation of Cu/O species. Our work highlights the importance of a mechanistic understanding to improve oxidation processes as well as underlines the use of metal-directed transformations to study the mechanisms by which metalloenzymes functionalize organic molecules.

摘要

综述

铜依赖性金属酶在温和条件下以氧气作为氧化剂催化各种各样的氧化转化反应。这些反应包括具有挑战性的有机底物的羟基化反应(例如,颗粒状甲烷单加氧酶中将甲烷氧化为甲醇)以及复杂分子的区域和对映选择性羟基化反应(例如,多巴胺-β-单加氧酶中将多巴胺苄基羟基化为去甲肾上腺素)。裂解多糖单加氧酶(LPMO)促进天然材料(如纤维素或几丁质)中多糖链的C-H羟基化及随后的链裂解。最近关于LPMO反应性的报道表明,这些铜依赖性金属酶不是利用氧气,而是利用过氧化氢作为氧化剂。2015年,我们的研究实验室报道,使用铜和过氧化氢对强C-H键(如环己烷)进行催化羟基化反应是通过形成非选择性的类芬顿氧化剂(羟基和氢过氧自由基)来进行的。为了实现区域选择性,LPMO在将铜中心暴露于氧化剂之前先结合有机底物,该反应在底物羟基化之前会导致形成高度有序的三元复合物(即金属-底物-氧化剂加合物)。基于这一概念,我们的研究实验室率先使用铜、导向基团和绿色氧化剂来促进酮和醛的位点选择性羟基化反应。在我们关于该主题的第一篇报告中,我们对Schönecker及其同事开发的铜导向的sp³ C-H羟基化反应进行了广泛的机理分析。我们的研究结果表明,铜与氧气之间的反应不会导致双核CuO的形成(如之前所认为的那样),而是生成铜和过氧化氢,后者会生成单核铜-氢过氧化物氧化剂。基于我们的机理分析,我们重新设计了反应条件以使用铜和过氧化氢,这提高了Schönecker氧化反应的产率、成本和实用性。从那时起,我们的研究实验室拓宽了可使用铜、过氧化氢和双齿导向基团进行氧化的底物范围,包括sp³ C-H键的γ-羟基化和sp² C-H键的β-羟基化。我们最新的报告集中在取代不对称二苯甲酮的区域选择性羟基化反应(该反应通过亲电CuOOH物种的形成而发生),并且首次报道了通过形成Cu/O物种进行的对映选择性C-H羟基化反应。我们的工作突出了机理理解对于改进氧化过程的重要性,同时也强调了利用金属导向的转化来研究金属酶使有机分子功能化的机制。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验