Suppr超能文献

利用超灵敏潘多拉测序结合机器学习筛选非侵入性rsRNA生物标志物以评估胚胎质量。

Screening for non-invasive rsRNA biomarkers to assess embryo quality utilizing ultra-sensitive pandora sequencing combined with machine learning.

作者信息

Wei Lina, Ou Songbang, Zhong Xinsheng, Liang Zhengjie, Hong Yuhe, Yang Xuemin, Zhang Yanfei, Li Yi

机构信息

Division of Histology and Embryology, International Joint Laboratory for Embryonic, Development and Prenatal Medicine, Medical College, Jinan University, Guangzhou, Guangdong, China.

Center for Reproductive Medicine, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.

出版信息

J Assist Reprod Genet. 2025 Sep 4. doi: 10.1007/s10815-025-03641-z.

Abstract

PURPOSE

Accurate embryo selection is vital for the success of in vitro fertilization (IVF); however, existing morphological scoring methods are inherently subjective and fail to capture underlying molecular alterations. This study aimed to identify non-invasive molecular markers for embryo quality assessment by analyzing highly modified ribosomal small RNAs (rsRNAs) in embryo culture medium using ultra-sensitive sequencing and machine learning.

METHODS

Ultra-sensitive Pandora sequencing was employed to profile rsRNAs in embryo culture medium. Machine learning algorithms were used to identify rsRNA biomarkers linked to embryo quality. Candidate rsRNAs were further validated via quantitative reverse transcription polymerase chain reaction (qRT-PCR).

RESULTS

Four candidate rsRNAs (5S, 5.8S, 28-1S, 28-2S) were significantly associated with embryo quality through machine learning analysis, achieving high predictive accuracy (AUC = 0.955) in cross-validation. qRT-PCR confirmed that 5.8S and 28-2S rsRNA levels were markedly elevated in the culture medium of high-quality embryos.

CONCLUSION

Specific rsRNAs, particularly 5.8S and 28-2S, may serve as non-invasive biomarkers for embryo selection in IVF. These findings highlight the potential roles of rsRNAs in embryonic development and provide a molecular basis for improving IVF outcomes.

摘要

目的

准确的胚胎选择对于体外受精(IVF)的成功至关重要;然而,现有的形态学评分方法本质上是主观的,无法捕捉潜在的分子改变。本研究旨在通过使用超灵敏测序和机器学习分析胚胎培养基中的高度修饰核糖体小RNA(rsRNA),确定用于胚胎质量评估的非侵入性分子标记。

方法

采用超灵敏潘多拉测序对胚胎培养基中的rsRNA进行分析。使用机器学习算法识别与胚胎质量相关的rsRNA生物标志物。通过定量逆转录聚合酶链反应(qRT-PCR)进一步验证候选rsRNA。

结果

通过机器学习分析,四个候选rsRNA(5S、5.8S、28-1S、28-2S)与胚胎质量显著相关,在交叉验证中达到了较高的预测准确性(AUC = 0.955)。qRT-PCR证实,高质量胚胎培养基中5.8S和28-2S rsRNA水平显著升高。

结论

特定的rsRNA,尤其是5.8S和28-2S,可能作为IVF中胚胎选择的非侵入性生物标志物。这些发现突出了rsRNA在胚胎发育中的潜在作用,并为改善IVF结果提供了分子基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验