Suppr超能文献

急诊神经外科工作量趋势:来自三级医疗中心的证据。

Trends in Emergency Neurosurgical Workload: Evidence From a Tertiary Center.

作者信息

Dorby Hamath A, St George Edward J

机构信息

Oral and Maxillofacial Surgery, Queen Elizabeth University Hospital, Glasgow, GBR.

Neurosurgery, Queen Elizabeth University Hospital, Glasgow, GBR.

出版信息

Cureus. 2025 Sep 3;17(9):e91543. doi: 10.7759/cureus.91543. eCollection 2025 Sep.

Abstract

Background Emergency neurosurgical referrals are a leading driver of on-call workload and unplanned admissions. Tracking their volume and case-mix supports safe staffing, imaging capacity, and bed planning across regional networks. The study included all emergency referrals made to the department between 2020 and 2022. Methodology Patient data were individually extracted from a prospectively maintained local database. The initial step involved a de-duplication process, ensuring the dataset represented unique patient referrals for each year under consideration. The subsequent phase involved a nuanced categorization strategy to distinctly identify new case referrals against follow-ups. An advanced synonym recognition approach was adopted to include a range of terms and related clinical conditions, ensuring robust and inclusive data categorization. The data were analyzed in R Studio using negative binomial regression (monthly call counts, adjusted for seasonality), quasi-Poisson regression (sensitivity analysis of annual totals), the Kruskal-Wallis test (nonparametric comparison of monthly counts across years), Kendall's τ trend test (monotonic trend in annual counts), and logistic regression (odds of out-of-hours (OOH) vs. in-hours (InH) calls, adjusted for month). Results The data revealed a progressive increase in calls to the neurosurgical registrar, from 5,435 in 2016 to 9,567 in 2021 and 9,279 in 2022 (quasi-Poisson incidence rate ratio (IRR), 1.08 per year; 95% confidence interval (CI), 1.06-1.11; < 0.001). After seasonality adjustment, monthly referrals increased by 30% in 2021 (IRR 1.30, 95% CI 1.17-1.46) and 22% in 2022 (IRR 1.22, 95% CI 1.11-1.34) vs. 2020. Transfers climbed from 3,100/18,128 (17%) in 2016-2018 to 6,939/26,202 (27%) in 2020-2022. The proportion of calls logged OOH was unchanged (odds ratio (OR), 0.97 in 2021; 0.91 in 2022). The median transfer age was 56 years (interquartile range (IQR), 45-68), and 46% of patients were male. Cauda equina syndrome and chronic subdural hematoma accounted for 2,428 transfers (26%) in 2022, each representing an increase of 1,365 cases (78%) compared with 2020. Conclusions We observed year-on-year growth in emergency referrals, with a concurrent rise in transfers. While crude trends cannot distinguish true incidence from behavioral change, the data are consistent with a lowered operational threshold for both referral and transfer. Service planning should therefore prioritize rota resilience, ring-fenced urgent imaging, optimization of bed capacity, and clearer referral pathways; routine monitoring should be maintained to detect emerging risks to access and outcomes.

摘要

背景 急诊神经外科转诊是导致值班工作量和意外入院的主要因素。追踪其数量和病例组合有助于区域网络进行安全人员配置、影像检查能力规划以及床位规划。该研究纳入了2020年至2022年期间转诊至该科室的所有急诊病例。方法 从一个前瞻性维护的本地数据库中单独提取患者数据。第一步是去重过程,确保数据集中代表了所考虑的每年独特的患者转诊情况。后续阶段采用了细致的分类策略,以明确区分新病例转诊和随访病例。采用了先进的同义词识别方法,纳入一系列术语和相关临床病症,确保进行全面且包容的数据分类。使用负二项回归(每月呼叫次数,经季节性调整)、拟泊松回归(年度总数的敏感性分析)、Kruskal-Wallis检验(各年份每月呼叫次数的非参数比较)、Kendall's τ趋势检验(年度呼叫次数的单调趋势)以及逻辑回归(非工作时间(OOH)与工作时间(InH)呼叫的比值,经月份调整)在R Studio中对数据进行分析。结果 数据显示,神经外科住院医师接到的呼叫量逐年增加,从2016年的5435次增至2021年的9567次以及2022年的9279次(拟泊松发病率比(IRR),每年1.08;95%置信区间(CI),1.06 - 1.11;<0.001)。经季节性调整后,2021年每月转诊量增加了30%(IRR 1.30,95% CI 1.17 - 1.46),2022年相较于2020年增加了22%(IRR 1.22,95% CI 1.11 - 1.34)。转诊病例从2016 - 2018年的3100/18128(17%)增至2020 - 2022年的6939/26202(27%)。非工作时间记录的呼叫比例未变(比值比(OR),2021年为0.97;2022年为0.91)。转诊患者的中位年龄为56岁(四分位间距(IQR),45 - 68岁),46%的患者为男性。2022年,马尾综合征和慢性硬膜下血肿占2428例转诊病例(26%),与2020年相比,每种病症的病例数均增加了1365例(78%)。结论 我们观察到急诊转诊量逐年增长,同时转诊病例也有所增加。虽然粗略趋势无法区分真实发病率与行为变化,但这些数据与转诊和转院的操作阈值降低相一致。因此,服务规划应优先考虑排班弹性、专用的紧急影像检查、床位容量优化以及更清晰的转诊途径;应持续进行常规监测,以发现影响就医机会和治疗结果的新风险。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bea7/12407151/88f089126db6/cureus-0017-00000091543-i01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验