Balsamo Julia M, Yan Ying, Thai Dylan, Cologna Stephanie M, Bess Elizabeth N
Department of Chemistry, University of California, Irvine, CA 92617, USA.
Department of Chemistry, University of Illinois Chicago, Chicago, IL 60607, USA.
bioRxiv. 2025 Aug 30:2025.08.27.672706. doi: 10.1101/2025.08.27.672706.
Aggregates of the protein α-synuclein may initially form in the gut before propagating to the brain in Parkinson's disease. Indeed, our prior work supports that enteroendocrine cells, specialized intestinal epithelial cells, could play a key role in the development of this disease. Enteroendocrine cells natively express α-synuclein and synapse with enteric neurons as well as the vagus nerve. Severing the vagus nerve reduces the load of α-synuclein aggregates in the brain, suggesting that this nerve is a conduit for gut-to-brain spread. Enteroendocrine cells line the gut lumen, as such, they are in constant contact with metabolites of the gut microbiota. We previously found that when enteroendocrine cells are exposed to nitrite-a potent oxidant produced by gut bacterial -a biochemical pathway is initiated that results in α-synuclein aggregation. Here, we determined that dopamine production is critical to this mechanism of nitrite-induced α-synuclein aggregation. Using enteroendocrine cells, we modulated dopamine biosynthesis and profiled the cellular proteome and lipidome. Proteomic signatures in dopamine-free cells were distinctly different than in enteroendocrine cells, highlighting pathways relevant to intestinal development of Parkinson's disease. Intriguingly, we observed that enteroendocrine cells maintain viability upon exposure to nitrite and in the presence of α-synuclein aggregates. This cellular robustness suggests that dopamine-producing enteroendocrine cells may be a reservoir of toxic α-synuclein aggregates, which can spread through a prion-like process. As a possible antidote, our findings show that benserazide-a chemical inhibitor of dopamine biosynthesis-limits formation of these aggregates in enteroendocrine cells. These studies lay a foundation for mechanistically informed therapeutic targets to prevent intestinal formation of α-synuclein aggregates before they spread to the brain.
在帕金森病中,蛋白质α-突触核蛋白聚集体可能最初在肠道形成,然后传播至大脑。事实上,我们之前的研究支持肠内分泌细胞(一种特殊的肠道上皮细胞)可能在这种疾病的发展中起关键作用。肠内分泌细胞天然表达α-突触核蛋白,并与肠神经元以及迷走神经形成突触。切断迷走神经可减少大脑中α-突触核蛋白聚集体的负荷,这表明该神经是肠道向大脑传播的通道。肠内分泌细胞排列在肠腔内,因此它们与肠道微生物群的代谢产物持续接触。我们之前发现,当肠内分泌细胞暴露于亚硝酸盐(一种由肠道细菌产生的强氧化剂)时,会启动一条生化途径,导致α-突触核蛋白聚集。在这里,我们确定多巴胺的产生对这种亚硝酸盐诱导的α-突触核蛋白聚集机制至关重要。我们使用肠内分泌细胞,调节多巴胺生物合成,并对细胞蛋白质组和脂质组进行分析。无多巴胺细胞中的蛋白质组特征与肠内分泌细胞中的明显不同,突出了与帕金森病肠道发育相关的途径。有趣的是,我们观察到肠内分泌细胞在暴露于亚硝酸盐且存在α-突触核蛋白聚集体的情况下仍能维持活力。这种细胞的稳健性表明,产生多巴胺的肠内分泌细胞可能是有毒α-突触核蛋白聚集体的储存库,这些聚集体可以通过类似朊病毒的过程传播。作为一种可能的解毒剂,我们的研究结果表明,苄丝肼(一种多巴胺生物合成的化学抑制剂)可限制肠内分泌细胞中这些聚集体的形成。这些研究为基于机制的治疗靶点奠定了基础,以在α-突触核蛋白聚集体扩散至大脑之前预防其在肠道形成。