Suppr超能文献

化疗引起的口腔黏膜炎的预测模型:一项系统综述

Predictive models for chemotherapy-induced oral mucositis: a systematic review.

作者信息

Tao Yan, Zeng Xiang, Mao Hua

机构信息

Jianyang Traditional Chinese Medicine Hospital Nursing Department, Chengdu, China.

Nursing Department, Chongqing JiangJin District Hospital of Chinese Medicine, Chengdu, China.

出版信息

Front Oncol. 2025 Aug 20;15:1608505. doi: 10.3389/fonc.2025.1608505. eCollection 2025.

Abstract

OBJECTIVE

To critically appraise and synthesise existing risk prediction models for chemotherapy-induced oral mucositis (CIOM) in cancer patients, identifying their methodological strengths, limitations, and clinical utility to guide future model refinement.

METHODS

Relevant literature on CIOM risk prediction models published in PubMed, Cochrane Library, Embase, Web of Science, CNKI, Wanfang Data Knowledge Service Platform, VIP, and CBM was searched, covering the period from the inception of the databases to May 9, 2025. Researchers independently screened the literature and extracted data, utilising the Prediction Model Risk Of Bias Assessment Tool (PROBAST) to evaluate the quality of the models.

RESULT

After deduplication, a total of 3,603 articles were identified, encompassing 8 studies that presented 11 models of chemotherapy-induced oral mucositis. All 11 models reported the area under the receiver operating characteristic curve, which ranged from 0.630 to 0.966. The combined AUC value of the 5 models was 0.87 (95% CI: 0.81, 0.93). Five models reported calibration, 8 underwent internal validation, and only 4 underwent external validation. Age, oral hygiene, smoking history, chemotherapy cycles, and chemotherapy regimens were frequently reported predictors in the models. The applicability of the included studies was satisfactory; however, the overall risk of bias was high.

CONCLUSION

While the risk prediction models for CIOM in patients with malignant tumours demonstrate good applicability, they carry a high risk of bias. Future research should focus on developing more targeted models with lower bias risks based on different tumour types and conduct internal and external validations.

SYSTEMATIC REVIEW REGISTRATION

https://www.crd.york.ac.uk/PROSPERO, identifier CRD42024532626.

摘要

目的

对现有的癌症患者化疗引起的口腔黏膜炎(CIOM)风险预测模型进行严格评估和综合分析,确定其方法学优势、局限性及临床实用性,以指导未来模型的改进。

方法

检索了PubMed、Cochrane图书馆、Embase、Web of Science、中国知网、万方数据知识服务平台、维普和中国生物医学文献数据库中发表的关于CIOM风险预测模型的相关文献,涵盖从数据库建立至2025年5月9日的时间段。研究人员独立筛选文献并提取数据,使用预测模型偏倚风险评估工具(PROBAST)评估模型质量。

结果

经过去重,共识别出3603篇文章,其中8项研究提出了11种化疗引起的口腔黏膜炎模型。所有11种模型均报告了受试者工作特征曲线下面积,范围为0.630至0.966。5种模型的合并AUC值为0.87(95%CI:0.81,0.93)。5种模型报告了校准情况,8种进行了内部验证,只有4种进行了外部验证。年龄、口腔卫生、吸烟史、化疗周期和化疗方案是模型中经常报告的预测因素。纳入研究的适用性令人满意;然而,总体偏倚风险较高。

结论

虽然恶性肿瘤患者CIOM的风险预测模型显示出良好的适用性,但它们存在较高的偏倚风险。未来的研究应侧重于根据不同肿瘤类型开发偏倚风险更低的更具针对性的模型,并进行内部和外部验证。

系统评价注册

https://www.crd.york.ac.uk/PROSPERO,标识符CRD42024532626。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/47a1/12404939/ebe35ade8f06/fonc-15-1608505-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验