Suppr超能文献

基于影像组学与多模态医学影像联合预测结直肠癌KRAS基因突变的研究进展

Research progress on predicting KRAS gene mutations in colorectal cancer by combining radiomics and multimodal medical imaging.

作者信息

Ai Min, Li Li, Fan Shimei, He Cheng, Guo Yi, He Yang

机构信息

Department of Anesthesiology, Nanan District People's Hospital of Chongqing, Chongqing, China.

Pathology Department, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing Key Laboratory of Emergency Medicine, Chongqing, China.

出版信息

Front Oncol. 2025 Aug 20;15:1605915. doi: 10.3389/fonc.2025.1605915. eCollection 2025.

Abstract

Colorectal cancer (CRC), a highly prevalent malignant tumor in clinical practice, poses a serious threat to human health. In 2015, the relevant guidelines issued by the United States clearly stipulated that only patients with the wild-type kirsten rat sarcoma viral oncogene homologue (KRAS) gene were recommended to receive epidermal growth factor receptor (EGFR) inhibitor treatment. Therefore, accurately predicting the status of the KRAS gene plays a crucial role in formulating scientific and reasonable treatment plans and improving prognosis. Currently, multimodal medical imaging techniques, such as computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET), which rely on their respective advantages, have been widely applied in the preoperative evaluation of CRC and have become essential examination methods for the diagnosis of CRC. Radiomics was proposed by Lambin in 2012. This technology can extract features of medical images in a High throughput manner and conduct a quantitative analysis of the pathophysiological changes in lesions. In recent years, the integration of multimodal medical imaging and radiomics technology has opened a new path for predicting the mutation status of the KRAS gene and has achieved fruitful results. This article systematically reviews the research progress of radiomics and multimodal medical imaging in predicting CRC related gene mutations, deeply analyses the predictive efficiency of different imaging techniques and feature extraction methods for CRC related gene mutations, and aims to promote the transformation of scientific research achievements into clinical practice, providing a scientific and solid theoretical basis for clinicians to formulate precise treatment plans.

摘要

结直肠癌(CRC)是临床实践中一种高度常见的恶性肿瘤,对人类健康构成严重威胁。2015年,美国发布的相关指南明确规定,仅推荐野生型 Kirsten 大鼠肉瘤病毒癌基因同源物(KRAS)基因的患者接受表皮生长因子受体(EGFR)抑制剂治疗。因此,准确预测KRAS基因状态对于制定科学合理的治疗方案及改善预后起着至关重要的作用。目前,多模态医学成像技术,如计算机断层扫描(CT)、磁共振成像(MRI)和正电子发射断层扫描(PET),凭借各自优势,已广泛应用于CRC的术前评估,成为CRC诊断必不可少的检查方法。放射组学由兰宾于2012年提出。该技术能够以高通量方式提取医学图像特征,并对病变的病理生理变化进行定量分析。近年来,多模态医学成像与放射组学技术的融合为预测KRAS基因突变状态开辟了一条新途径,并取得了丰硕成果。本文系统综述了放射组学和多模态医学成像在预测CRC相关基因突变方面的研究进展,深入分析了不同成像技术和特征提取方法对CRC相关基因突变的预测效率,旨在推动科研成果转化为临床实践,为临床医生制定精准治疗方案提供科学坚实的理论依据。

相似文献

1
Research progress on predicting KRAS gene mutations in colorectal cancer by combining radiomics and multimodal medical imaging.
Front Oncol. 2025 Aug 20;15:1605915. doi: 10.3389/fonc.2025.1605915. eCollection 2025.
4
Prediction of KRAS gene mutations in colorectal cancer using a CT-based radiomic model.
Front Med (Lausanne). 2025 May 12;12:1592497. doi: 10.3389/fmed.2025.1592497. eCollection 2025.
6
Enhancing Preoperative Diagnosis of Subscapular Muscle Injuries with Shoulder MRI-based Multimodal Radiomics.
Acad Radiol. 2025 Feb;32(2):907-915. doi: 10.1016/j.acra.2024.09.049. Epub 2024 Oct 5.
7
Epidermal growth factor receptor (EGFR) inhibitors for metastatic colorectal cancer.
Cochrane Database Syst Rev. 2017 Jun 27;6(6):CD007047. doi: 10.1002/14651858.CD007047.pub2.

本文引用的文献

1
Prediction of KRAS gene mutations in colorectal cancer using a CT-based radiomic model.
Front Med (Lausanne). 2025 May 12;12:1592497. doi: 10.3389/fmed.2025.1592497. eCollection 2025.
2
Automatic Detection of Cognitive Impairment in Patients With White Matter Hyperintensity Using Deep Learning and Radiomics.
Am J Alzheimers Dis Other Demen. 2025 Jan-Dec;40:15333175251325091. doi: 10.1177/15333175251325091. Epub 2025 Mar 14.
6
CHNet: A multi-task global-local Collaborative Hybrid Network for KRAS mutation status prediction in colorectal cancer.
Artif Intell Med. 2024 Sep;155:102931. doi: 10.1016/j.artmed.2024.102931. Epub 2024 Jul 5.
7
Colon Cancer, Version 3.2024, NCCN Clinical Practice Guidelines in Oncology.
J Natl Compr Canc Netw. 2024 Jun;22(2 D). doi: 10.6004/jnccn.2024.0029.
9
Update on Targeted Therapy and Immunotherapy for Metastatic Colorectal Cancer.
Cells. 2024 Jan 28;13(3):245. doi: 10.3390/cells13030245.
10
Radiomics analysis to predict pulmonary nodule malignancy using machine learning approaches.
Thorax. 2024 Mar 15;79(4):307-315. doi: 10.1136/thorax-2023-220226.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验