Suppr超能文献

CHNet:一种用于预测结直肠癌中KRAS突变状态的多任务全局-局部协作混合网络。

CHNet: A multi-task global-local Collaborative Hybrid Network for KRAS mutation status prediction in colorectal cancer.

作者信息

Cai Meiling, Zhao Lin, Qiang Yan, Wang Long, Zhao Juanjuan

机构信息

College of computer science and technology (College of data science), Taiyuan University of Technology, Taiyuan, 030024, Shanxi, China.

Southeast University, Nanjing, 210037, Jiangsu, China.

出版信息

Artif Intell Med. 2024 Sep;155:102931. doi: 10.1016/j.artmed.2024.102931. Epub 2024 Jul 5.

Abstract

Accurate prediction of Kirsten rat sarcoma (KRAS) mutation status is crucial for personalized treatment of advanced colorectal cancer patients. However, despite the excellent performance of deep learning models in certain aspects, they often overlook the synergistic promotion among multiple tasks and the consideration of both global and local information, which can significantly reduce prediction accuracy. To address these issues, this paper proposes an innovative method called the Multi-task Global-Local Collaborative Hybrid Network (CHNet) aimed at more accurately predicting patients' KRAS mutation status. CHNet consists of two branches that can extract global and local features from segmentation and classification tasks, respectively, and exchange complementary information to collaborate in executing these tasks. Within the two branches, we have designed a Channel-wise Hybrid Transformer (CHT) and a Spatial-wise Hybrid Transformer (SHT). These transformers integrate the advantages of both Transformer and CNN, employing cascaded hybrid attention and convolution to capture global and local information from the two tasks. Additionally, we have created an Adaptive Collaborative Attention (ACA) module to facilitate the collaborative fusion of segmentation and classification features through guidance. Furthermore, we introduce a novel Class Activation Map (CAM) loss to encourage CHNet to learn complementary information between the two tasks. We evaluate CHNet on the T2-weighted MRI dataset, and achieve an accuracy of 88.93% in KRAS mutation status prediction, which outperforms the performance of representative KRAS mutation status prediction methods. The results suggest that our CHNet can more accurately predict KRAS mutation status in patients via a multi-task collaborative facilitation and considering global-local information way, which can assist doctors in formulating more personalized treatment strategies for patients.

摘要

准确预测 Kirsten 大鼠肉瘤(KRAS)突变状态对于晚期结直肠癌患者的个性化治疗至关重要。然而,尽管深度学习模型在某些方面表现出色,但它们往往忽略了多个任务之间的协同促进作用以及对全局和局部信息的考量,这可能会显著降低预测准确性。为了解决这些问题,本文提出了一种创新方法,称为多任务全局-局部协作混合网络(CHNet),旨在更准确地预测患者的 KRAS 突变状态。CHNet 由两个分支组成,分别可以从分割和分类任务中提取全局和局部特征,并交换互补信息以协同执行这些任务。在这两个分支内,我们设计了通道混合变换器(CHT)和空间混合变换器(SHT)。这些变换器融合了变换器和卷积神经网络的优点,采用级联混合注意力和卷积来从这两个任务中捕获全局和局部信息。此外,我们创建了一个自适应协作注意力(ACA)模块,以通过引导促进分割和分类特征的协作融合。此外,我们引入了一种新颖的类激活映射(CAM)损失,以鼓励 CHNet 学习两个任务之间的互补信息。我们在 T2 加权磁共振成像(MRI)数据集上对 CHNet 进行评估,在 KRAS 突变状态预测中达到了 88.93%的准确率,优于代表性的 KRAS 突变状态预测方法的性能。结果表明,我们的 CHNet 可以通过多任务协作促进和考虑全局-局部信息的方式更准确地预测患者的 KRAS 突变状态,这可以帮助医生为患者制定更个性化的治疗策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验