Loni Mohammad, Poursalim Fatemeh, Asadi Mehdi, Gharehbaghi Arash
School of Innovation, Design and Engineering, Mälardalen University, Västerås, Sweden.
Servicehälsan Familjeläkare i Västerås AB, Västerås, Sweden.
NPJ Digit Med. 2025 May 15;8(1):281. doi: 10.1038/s41746-024-01409-w.
This paper presents the results of a novel scoping review on the practical models for generating three different types of synthetic health records (SHRs): medical text, time series, and longitudinal data. The innovative aspects of the review, which incorporate study objectives, data modality, and research methodology of the reviewed studies, uncover the importance and the scope of the topic for the digital medicine context. In total, 52 publications met the eligibility criteria for generating medical time series (22), longitudinal data (17), and medical text (13). Privacy preservation was found to be the main research objective of the studied papers, along with class imbalance, data scarcity, and data imputation as the other objectives. The adversarial network-based, probabilistic, and large language models exhibited superiority for generating synthetic longitudinal data, time series, and medical texts, respectively. Finding a reliable performance measure to quantify SHR re-identification risk is the major research gap of the topic.
本文介绍了一项新颖的范围综述结果,该综述针对生成三种不同类型的合成健康记录(SHR)的实用模型展开:医学文本、时间序列和纵向数据。该综述的创新之处在于纳入了所审查研究的研究目标、数据模态和研究方法,揭示了该主题在数字医学背景下的重要性和范围。总共有52篇出版物符合生成医学时间序列(22篇)、纵向数据(17篇)和医学文本(13篇)的纳入标准。研究发现隐私保护是所研究论文的主要研究目标,此外还有类别不平衡、数据稀缺和数据插补等其他目标。基于对抗网络、概率和大语言模型分别在生成合成纵向数据、时间序列和医学文本方面表现出优势。找到一种可靠的性能度量来量化SHR重新识别风险是该主题的主要研究空白。