Keyl Julius, Keyl Philipp, Montavon Grégoire, Hosch René, Brehmer Alexander, Mochmann Liliana, Jurmeister Philipp, Dernbach Gabriel, Kim Moon, Koitka Sven, Bauer Sebastian, Bechrakis Nikolaos, Forsting Michael, Führer-Sakel Dagmar, Glas Martin, Grünwald Viktor, Hadaschik Boris, Haubold Johannes, Herrmann Ken, Kasper Stefan, Kimmig Rainer, Lang Stephan, Rassaf Tienush, Roesch Alexander, Schadendorf Dirk, Siveke Jens T, Stuschke Martin, Sure Ulrich, Totzeck Matthias, Welt Anja, Wiesweg Marcel, Baba Hideo A, Nensa Felix, Egger Jan, Müller Klaus-Robert, Schuler Martin, Klauschen Frederick, Kleesiek Jens
Institute for Artificial Intelligence in Medicine, University Hospital Essen (AöR), Essen, Germany.
Institute of Pathology, University Hospital Essen (AöR), Essen, Germany.
Nat Cancer. 2025 Feb;6(2):307-322. doi: 10.1038/s43018-024-00891-1. Epub 2025 Jan 30.
Despite advances in precision oncology, clinical decision-making still relies on limited variables and expert knowledge. To address this limitation, we combined multimodal real-world data and explainable artificial intelligence (xAI) to introduce AI-derived (AID) markers for clinical decision support. We used xAI to decode the outcome of 15,726 patients across 38 solid cancer entities based on 350 markers, including clinical records, image-derived body compositions, and mutational tumor profiles. xAI determined the prognostic contribution of each clinical marker at the patient level and identified 114 key markers that accounted for 90% of the neural network's decision process. Moreover, xAI enabled us to uncover 1,373 prognostic interactions between markers. Our approach was validated in an independent cohort of 3,288 patients with lung cancer from a US nationwide electronic health record-derived database. These results show the potential of xAI to transform the assessment of clinical variables and enable personalized, data-driven cancer care.
尽管精准肿瘤学取得了进展,但临床决策仍依赖于有限的变量和专家知识。为了解决这一局限性,我们将多模式真实世界数据与可解释人工智能(xAI)相结合,引入人工智能衍生(AID)标志物以支持临床决策。我们使用xAI根据350个标志物对38种实体癌的15726例患者的预后进行解码,这些标志物包括临床记录、图像衍生的身体成分和肿瘤突变谱。xAI在患者层面确定了每个临床标志物的预后贡献,并识别出114个关键标志物,这些标志物占神经网络决策过程的90%。此外,xAI使我们能够发现标志物之间1373种预后相互作用。我们的方法在美国全国电子健康记录衍生数据库中3288例肺癌患者的独立队列中得到了验证。这些结果显示了xAI在改变临床变量评估及实现个性化、数据驱动的癌症治疗方面的潜力。