Chu Shiyong, Chen Yuwei
Aviation Industry Development Research Center of China, Beijing, China.
Front Artif Intell. 2025 Aug 20;8:1623573. doi: 10.3389/frai.2025.1623573. eCollection 2025.
Autonomous systems operating in high-dimensional environments increasingly rely on prioritization heuristics to allocate attention and assess risk, yet these mechanisms can introduce cognitive biases such as salience, spatial framing, and temporal familiarity that influence decision-making without altering the input or accessing internal states. This study presents Priority Inversion via Operational Reasoning (PRIOR), a black-box, non-perturbative diagnostic framework that employs structurally biased but semantically neutral scenario cues to probe inference-level vulnerabilities without modifying pixel-level, statistical, or surface semantic properties. Given the limited accessibility of embodied vision-based systems, we evaluate PRIOR using large language models (LLMs) as abstract reasoning proxies to simulate cognitive prioritization in constrained textual surveillance scenarios inspired by Unmanned Aerial Vehicle (UAV) operations. Controlled experiments demonstrate that minimal structural cues can consistently induce priority inversions across multiple models, and joint analysis of model justifications and confidence estimates reveals systematic distortions in inferred threat relevance even when inputs are symmetrical. These findings expose the fragility of inference-level reasoning in black-box systems and motivate the development of evaluation strategies that extend beyond output correctness to interrogate internal prioritization logic, with implications for dynamic, embodied, and visually grounded agents in real-world deployments.
在高维环境中运行的自主系统越来越依赖于优先级启发式方法来分配注意力和评估风险,然而这些机制可能会引入认知偏差,如显著性、空间框架和时间熟悉度,这些偏差会影响决策,而不会改变输入或访问内部状态。本研究提出了通过操作推理实现优先级反转(PRIOR),这是一种黑盒、非扰动性诊断框架,它使用结构上有偏差但语义上中立的场景线索来探测推理层面的漏洞,而不修改像素级、统计或表面语义属性。鉴于基于视觉的实体系统的可访问性有限,我们使用大语言模型(LLM)作为抽象推理代理来评估PRIOR,以模拟受无人机(UAV)操作启发的受限文本监视场景中的认知优先级。对照实验表明,最小的结构线索可以在多个模型中持续诱导优先级反转,对模型理由和置信度估计的联合分析揭示了即使输入对称时,推断威胁相关性中的系统性扭曲。这些发现揭示了黑盒系统中推理层面推理的脆弱性,并推动了评估策略的发展,这些策略超越了输出正确性,以审视内部优先级逻辑,对现实世界部署中的动态、实体和视觉基础智能体具有启示意义。