Suppr超能文献

亚氨基硼酸酯化学可实现多功能且可再加工的多酚衍生的 Vitrimer 材料。

Iminoboronate chemistry enables multifunctional and reprocessable polyphenol-derived vitrimers.

作者信息

Li Zhan, Liang Bo, Zhang Rong, Yang Lei, Ren Xiancheng, Xiong Shaohui, Zhang Wei, Hu Junfei, Gu Zhipeng, Li Yiwen

机构信息

College of Polymer Science and Engineering, State Key Laboratory of Advanced Polymer Materials, Sichuan University Chengdu 610065 China

School of Materials Science and Engineering, Hubei University of Automotive Technology Shiyan 442002 China.

出版信息

Chem Sci. 2025 Aug 19. doi: 10.1039/d5sc04914h.

Abstract

Polyphenol-derived vitrimers offer compelling prospects for sustainable materials owing to their intrinsic recyclability, reprocessability and biodegradability. However, practical development remains constrained by structure degradation under harsh reprocessing conditions and the need for sophisticated modifications of the bio-sourced precursors. Herein, we reported a strategy that integrates commercially available polyphenols and low-molecular-weight PDMS through adaptable iminoboronate chemistry, obviating the need for structural modifications. The N-B coordination lowers the activation barriers for both imine and boronic ester exchange, enabling efficient bond rearrangement. The resulting vitrimers exhibited excellent reprocessability under relatively mild conditions while retaining excellent creep resistance under typical usage conditions. Furthermore, the dynamic chemical framework supports multiple functionalities, including adhesion performance, Fe-induced photothermal effects, and anthracene-mediated fluorescence response. Notably, replacing PDMS with a polyurethane matrix yields vitrimers with outstanding mechanical performance (ultimate tensile strength ≈21.4 MPa; elongation at break ≈731%) and enables reprocessing at temperatures as low as 80 °C. This work presents a novel strategy for developing robust and multifunctional vitrimers with mild reprocessing properties, making them suitable for a wide range of practical applications.

摘要

源自多酚的玻璃态物质因其固有的可回收性、可再加工性和生物降解性,为可持续材料提供了引人注目的前景。然而,实际开发仍然受到苛刻再加工条件下结构降解以及对生物源前体进行复杂改性的需求的限制。在此,我们报道了一种通过适应性亚胺硼酸酯化学将市售多酚与低分子量聚二甲基硅氧烷整合的策略,无需进行结构改性。N-B配位降低了亚胺和硼酸酯交换的活化能垒,实现了高效的键重排。所得的玻璃态物质在相对温和的条件下表现出优异的可再加工性,同时在典型使用条件下保持优异的抗蠕变性。此外,动态化学框架支持多种功能,包括粘附性能、铁诱导的光热效应和蒽介导的荧光响应。值得注意的是,用聚氨酯基质替代聚二甲基硅氧烷可得到具有出色机械性能(极限拉伸强度≈21.4 MPa;断裂伸长率≈731%)的玻璃态物质,并能在低至80°C的温度下进行再加工。这项工作提出了一种开发具有温和再加工性能的坚固且多功能玻璃态物质的新策略,使其适用于广泛的实际应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37c0/12407006/ca7a989566ac/d5sc04914h-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验