Rossi Thomas C, Tancogne-Dejean Nicolas, Oppermann Malte, Porer Michael, Magrez Arnaud, Chopdekar Rajesh V, Takamura Yayoi, Staub Urs, van der Veen Renske M, Rubio Angel, Chergui Majed
Laboratory of Ultrafast Spectroscopy, SB-ISIC, and Lausanne Centre for Ultrafast Science (LACUS), Ecole Polytechnique Fédérale de Lausanne, Station 6, CH-1015 Lausanne, Switzerland.
Department of Atomic-Scale Dynamics in Light-Energy Conversion (PS-ADLU), Helmholtz Zentrum Berlin für Materialien und Energie GmbH, Magnusstrasse 2, 12489 Berlin, Germany.
Sci Adv. 2025 Sep 5;11(36):eadx5676. doi: 10.1126/sciadv.adx5676.
The electronic properties of correlated insulators are governed by the strength of Coulomb interactions, enabling the control of electronic conductivity with external stimuli. This work highlights that the strength of electronic correlations in nickel oxide (NiO), a prototypical charge-transfer insulator, can be coherently reduced by tuning the intensity of an optical pulse excitation. This weakening of correlations persists for hundreds of picoseconds and exhibits a recovery time independent of photodoping density across two orders of magnitude. A broadening of the charge-transfer gap is also observed, consistent with dynamical screening. The high degree of control achieved over both the energy and temporal dynamics of electronic correlations offers a promising avenue to a full optical control of correlated systems and the Mott transition.
关联绝缘体的电子特性由库仑相互作用的强度决定,这使得能够通过外部刺激来控制电导率。这项工作突出表明,作为典型的电荷转移绝缘体,氧化镍(NiO)中的电子关联强度可以通过调节光脉冲激发的强度而连贯地降低。这种关联的减弱持续数百皮秒,并且在两个数量级范围内表现出与光掺杂密度无关的恢复时间。还观察到电荷转移能隙变宽,这与动态屏蔽一致。对电子关联的能量和时间动态实现的高度控制为关联系统和莫特转变的全光控制提供了一条有前景的途径。