Liu Fang, Ziffer Mark E, Hansen Kameron R, Wang Jue, Zhu Xiaoyang
Department of Chemistry, Columbia University, New York, New York 10027, USA.
Phys Rev Lett. 2019 Jun 21;122(24):246803. doi: 10.1103/PhysRevLett.122.246803.
A key feature of monolayer semiconductors, such as transition-metal dichalcogenides, is the poorly screened Coulomb potential, which leads to a large exciton binding energy (E_{b}) and strong renormalization of the quasiparticle band gap (E_{g}) by carriers. The latter has been difficult to determine due to a cancellation in changes of E_{b} and E_{g}, resulting in little change in optical transition energy at different carrier densities. Here, we quantify band-gap renormalization in macroscopic single crystal MoS_{2} monolayers on SiO_{2} using time and angle-resolved photoemission spectroscopy. At an excitation density above the Mott threshold, E_{g} decreases by as much as 360 meV. We compare the carrier density-dependent E_{g} with previous theoretical calculations and show the necessity of knowing both doping and excitation densities in quantifying the band gap.
单层半导体(如过渡金属二硫属化物)的一个关键特性是库仑势屏蔽效果不佳,这导致了较大的激子结合能((E_{b}))以及载流子对准粒子带隙((E_{g}))的强烈重整化。由于(E_{b})和(E_{g})的变化相互抵消,使得后者难以确定,这导致在不同载流子密度下光学跃迁能量变化很小。在此,我们使用时间和角分辨光电子能谱对(SiO_{2})上的宏观单晶(MoS_{2})单层中的带隙重整化进行了量化。在高于莫特阈值的激发密度下,(E_{g})降低了多达360毫电子伏特。我们将与载流子密度相关的(E_{g})与先前的理论计算进行了比较,并表明在量化带隙时了解掺杂密度和激发密度两者的必要性。