Scholz Laura, Amsalem Patrick, Frohloff Lennart, Wang Rongbin, Albert Emily, Tang Kan, Barlow Stephen, Marder Seth R, Koch Norbert
Insitut für Physik and Center for the Science of Materials Berlin, Humboldt-Universität zu Berlin, Berlin 12489, Germany.
Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489 Berlin, Germany.
ACS Nano. 2025 Sep 16;19(36):32693-32704. doi: 10.1021/acsnano.5c10363. Epub 2025 Sep 8.
Electric gating in atomically thin field-effect devices based on transition-metal dichalcogenides has recently been employed to manipulate their excitonic states, even producing exotic phases of matter, such as an excitonic insulator or Bose-Einstein condensate. Here, we mimic the electric gating effect of a bilayer-MoS on graphite by charge transfer induced by the adsorption of molecular p- and n-type dopants. The electric fields produced are evaluated from the electronic energy-level realignment and Stark splitting determined by X-ray and UV photoelectron spectroscopy measurements and compare very well with literature values obtained by optical spectroscopy for similar systems. We then show that analysis of the inhomogeneous broadening and energy shifts of the quantum-well states of the valence band allows extraction of the full electric potential profile and charge-density redistribution across the entire heterojunction with atomic-scale precision, which is not accessible by other methods.
基于过渡金属二硫属化物的原子级薄场效应器件中的电门控技术最近已被用于操纵其激子态,甚至能产生奇异的物质相,如激子绝缘体或玻色-爱因斯坦凝聚体。在此,我们通过分子p型和n型掺杂剂的吸附所诱导的电荷转移,模拟双层二硫化钼对石墨的电门控效应。所产生的电场通过由X射线和紫外光电子能谱测量确定的电子能级重新排列和斯塔克分裂来评估,并且与通过光谱学获得的类似系统的文献值非常吻合。然后我们表明,对价带量子阱态的非均匀展宽和能量位移进行分析,可以以原子尺度精度提取整个异质结上的完整电势分布和电荷密度重新分布,这是其他方法无法实现的。