Rothe Amber K, Brumfiel Timothy A, Konda Revanth, Williams Kirsten M, Desai Jaydev P
Medical Robotics and Automation (RoboMed) Laboratory, Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA.
Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University, Atlanta, GA 30342 USA.
IEEE Robot Autom Lett. 2025 Jan;10(1):414-420. doi: 10.1109/lra.2024.3497652. Epub 2024 Nov 13.
Bronchoalveolar lavage (BAL) is a minimally invasive procedure for diagnosing lung infections and diseases. However, navigating tortuous lung anatomy to the distal branches of the bronchoalveolar tree for adequate sampling using BAL remains challenging. Continuum robots have been used to improve the navigation of guidewires, catheters, and endoscopes and could be applied to the BAL procedure as well. One class of continuum robots is constructed from a notched tube and actuated using a tendon. Many tendon-driven notched continuum robots use uniform machining parameters to achieve approximately constant-curvature configurations, which may be unsuitable for traversing the tortuous anatomy of the lungs. This paper presents a model that predicts the curvature of a robot with arbitrary notch shapes subjected to tendon tension. The model predicted the deflection of rectangular, elliptical, and sinusoidal notches in a 0.89 mm diameter nitinol tube with 2.32%, 3.65%, and 6.32% error, respectively. Furthermore, an algorithm is developed to determine the optimal pattern of notches to achieve a desired nonuniform robot curvature. A simulated robot designed using the algorithm achieved the desired shape with a root mean square error (RMSE) of 1.52°. Additionally, we present a model for predicting the shape of nonuniformly notched continuum robots which incorporates friction and pre-curvature. This model predicted the shape of a continuum robot with nonuniform rectangular notches with an average RMSE of 5.20° with respect to the actual robot. We also demonstrated navigating the continuum robot through a pulmonary phantom.
支气管肺泡灌洗(BAL)是一种用于诊断肺部感染和疾病的微创程序。然而,使用BAL在曲折的肺部解剖结构中导航至支气管肺泡树的远端分支以进行充分采样仍然具有挑战性。连续体机器人已被用于改善导丝、导管和内窥镜的导航,并且也可应用于BAL程序。一类连续体机器人由带切口的管子构成,并通过腱驱动。许多腱驱动的带切口连续体机器人使用统一的加工参数来实现近似恒定曲率的构型,这可能不适用于穿越肺部的曲折解剖结构。本文提出了一个模型,该模型可预测受腱张力作用的具有任意切口形状的机器人的曲率。该模型预测了直径为0.89毫米的镍钛诺管中矩形、椭圆形和正弦形切口的挠度,误差分别为2.32%、3.65%和6.32%。此外,还开发了一种算法来确定切口的最佳模式,以实现所需的非均匀机器人曲率。使用该算法设计的模拟机器人实现了所需形状,均方根误差(RMSE)为1.52°。此外,我们还提出了一个用于预测包含摩擦和预曲率的非均匀带切口连续体机器人形状的模型。该模型预测了具有非均匀矩形切口的连续体机器人的形状,相对于实际机器人,平均RMSE为5.20°。我们还展示了连续体机器人在肺部模型中的导航。