Ko Dayeon, Joo Se Hun, Kim Sol, Kim In Soo, Park Minwoo
Department of Chemical and Biological Engineering Sookmyung Women's University Seoul 04310 Korea.
Nanophotonics Research Center Korea Institute of Science and Technology (KIST) Seoul 02792 Korea.
Small Sci. 2025 Jul 7;5(9):2500196. doi: 10.1002/smsc.202500196. eCollection 2025 Sep.
Atomic layer deposition (ALD) enables an excellent surface coverage and uniformity in the preparation of large-area metal-oxide thin films. In particular, ALD-processed SnO has demonstrated great potential as an electron transport layer in flexible perovskite solar cells (PSCs) and tandem modules. However, the poor electrical conductivities and surface wettabilities of amorphous SnO remain critical challenges for commercialization. In this study, a low-temperature and rapid crystallization process for amorphous SnO is introduced, based on the use of high-power ultraviolet (UV) exposure (UV-SnO) to achieve high-performance flexible PSCs. The generation of highly dense O/OH radicals under UV exposure effectively ruptures the imperfect and weak bonds in the SnO matrix, thereby facilitating the formation of nanocrystalline SnO. This transformation enhances the conductivity and shifts the energy levels upward, promoting electron injection and transfer from the perovskite. Rigid and flexible devices exhibit remarkable power conversion efficiencies (PCEs) of 22.86 and 21.49%, respectively. Furthermore, the flexible device demonstrates an excellent mechanical durability and environmental stability, retaining 93.3% of its initial PCE after 1500 bending cycles ( = 12 mm) and 87.4% after 1000 h under 1 sun illumination. These results highlight the potential of photocrystallization for advancing flexible PSC technologies.
原子层沉积(ALD)在大面积金属氧化物薄膜的制备中能够实现优异的表面覆盖率和均匀性。特别是,经过ALD处理的SnO在柔性钙钛矿太阳能电池(PSC)和串联模块中作为电子传输层已展现出巨大潜力。然而,非晶态SnO较差的电导率和表面润湿性仍然是商业化面临的关键挑战。在本研究中,基于使用高功率紫外线(UV)照射(UV-SnO)引入了一种用于非晶态SnO的低温快速结晶工艺,以实现高性能柔性PSC。紫外线照射下产生的高密度O/OH自由基有效地破坏了SnO基体中不完美和薄弱的键,从而促进了纳米晶SnO的形成。这种转变提高了电导率并使能级向上移动,促进了电子从钙钛矿的注入和转移。刚性和柔性器件分别展现出22.86%和21.49%的显著功率转换效率(PCE)。此外,柔性器件表现出优异的机械耐久性和环境稳定性,在1500次弯曲循环(曲率半径=12毫米)后保留其初始PCE的93.3%,在1个太阳光照下1000小时后保留87.4%。这些结果突出了光结晶在推进柔性PSC技术方面的潜力。