Suppr超能文献

利用核磁共振光谱揭示染色质的结构和动力学特征。

Unveiling structural and dynamical features of chromatin using NMR spectroscopy.

作者信息

Shi Xiangyan

机构信息

Department of Biology, Shenzhen MSU-BIT University, No. 1 International University Park Road, Shenzhen, 518172, China.

出版信息

Magn Reson Lett. 2024 Jul 18;4(4):200153. doi: 10.1016/j.mrl.2024.200153. eCollection 2024 Nov.

Abstract

Eukaryotic deoxyribonucleic acid (DNA) is wrapped around histone octamers (HOs) to form nucleosome core particles (NCPs), which in turn interact with linker DNA and linker histones to assemble chromatin fibers with more complex, high-order structures. The molecular properties of chromatin are dynamically regulated by several factors, such as post-translational modifications and effector proteins, to maintain genome stability. In the past two decades, high-resolution techniques have led to many breakthroughs in understanding the molecular mechanisms that govern chromatin regulation. Nuclear magnetic resonance (NMR) has emerged as one of the major techniques in this field, providing new insights into the nucleosomes and nucleosome-protein complexes in different states ranging from soluble form to condensed states. Solution-state NMR has proven valuable in elucidating the conformational dynamics and molecular interactions for histone N-terminal tails, histone core regions and DNA with the combination of specific isotopic labeling. Solid-state NMR, which is not constrained by the high molecular weights of complexes like nucleosomes, has been applied to capture the structural and dynamical characteristics of both flexible tails and rigid histone core regions in nucleosomes and their complexes with effector proteins. Furthermore, the combination of the two techniques allows tracking molecular properties of nucleosomes during phase separation processes, which potentially play essential roles in chromatin regulation. This review summarizes recent advances in NMR studies of chromatin structure and dynamics. It highlighted that NMR revealed unique molecular characteristics for nucleosomes that are often invisible experimentally by other techniques like cryogenic electron microscopy (cryo-EM) and X-ray diffraction (XRD). I envision that, with future efforts such as the development of NMR methods and optimization of sample production protocols, solution-state NMR and solid-state NMR will provide invaluable information to expand our understanding of chromatin activity and its regulatory processes.

摘要

真核生物的脱氧核糖核酸(DNA)缠绕在组蛋白八聚体(HOs)周围形成核小体核心颗粒(NCPs),这些核小体核心颗粒又与连接DNA和连接组蛋白相互作用,以组装具有更复杂高阶结构的染色质纤维。染色质的分子特性受到多种因素的动态调节,如翻译后修饰和效应蛋白,以维持基因组稳定性。在过去二十年中,高分辨率技术在理解染色质调控的分子机制方面取得了许多突破。核磁共振(NMR)已成为该领域的主要技术之一,为从可溶形式到凝聚态等不同状态的核小体和核小体 - 蛋白质复合物提供了新的见解。溶液态NMR已证明在结合特定同位素标记阐明组蛋白N端尾巴、组蛋白核心区域和DNA的构象动力学及分子相互作用方面具有价值。固态NMR不受核小体等复合物高分子量的限制,已被用于捕捉核小体中柔性尾巴和刚性组蛋白核心区域及其与效应蛋白复合物的结构和动力学特征。此外,这两种技术的结合允许在相分离过程中追踪核小体的分子特性,而相分离过程可能在染色质调控中发挥重要作用。本综述总结了染色质结构和动力学NMR研究的最新进展。它强调了NMR揭示了核小体独特的分子特征,而这些特征在低温电子显微镜(cryo - EM)和X射线衍射(XRD)等其他技术的实验中往往不可见。我设想,随着未来诸如NMR方法开发和样品制备方案优化等努力,溶液态NMR和固态NMR将提供宝贵信息,以扩展我们对染色质活性及其调控过程的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/34f3/12406569/ec9bca14b2e8/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验