Maqsood Sammra, Basher Nosiba S, Arshad Muhammad Tayyab, Ikram Ali, Kalman Douglas S, Hossain Md Sakhawot, Laryea Emmanuel, Ibrahim Nasir A
National Institute of Food Science and Technology, University of Agriculture Faisalabad Faisalabad Pakistan.
Department of Biology, College of Sciences Imam Mohammad Ibn Saud Islamic University (IMSIU) Riyadh Saudi Arabia.
Food Sci Nutr. 2025 Sep 4;13(9):e70895. doi: 10.1002/fsn3.70895. eCollection 2025 Sep.
, commonly known as sweet potato, is an increasingly valued functional food because of its vivid coloration and rich bioactive compounds, especially anthocyanins and carotenoids, such as ipomoeaxanthin. This review focuses on the bioavailability, mechanisms of action, and therapeutic potential of sweet potato-derived anthocyanins in diabetes and metabolic disorders. Anthocyanins, which are plant pigments, exhibit high antioxidant activity by scavenging free radicals and stimulating endogenous antioxidant enzymes such as catalase and superoxide dismutase, thereby protecting cellular structures from damage and reducing oxidative damage in vital metabolic organs such as the pancreas, liver, brain, and muscles. Anthocyanins also increase insulin sensitivity, regulate glucose metabolism, and regulate enzymes involved in carbohydrate digestion, thus reducing the risk of diabetes. In addition, anthocyanins inhibit low-grade chronic inflammation by inhibiting the inflammatory mediators TNF-α, IL-6, and NF-κB signaling pathways implicated in the progression of type 2 diabetes. Clinical evidence supports preclinical animal models and ongoing human trials favoring sweet potato consumption to enhance glucose control and decrease insulin resistance. However, challenges remain regarding the poor bioavailability of anthocyanins and the need for stronger human studies. In addition to anthocyanins, sweet potatoes contain diverse nutrients that contribute to their metabolic health. This review highlights the significance of sweet potatoes as a functional food ingredient in diabetes prevention diets and encourages new processing methods that can sustain their bioactive potential.
红薯,通常被称为甘薯,因其鲜艳的色泽和丰富的生物活性化合物,特别是花青素和类胡萝卜素,如异胡罗卜素,而成为一种越来越受重视的功能性食品。本综述聚焦于红薯来源的花青素在糖尿病和代谢紊乱方面的生物利用度、作用机制及治疗潜力。花青素作为植物色素,通过清除自由基和刺激过氧化氢酶和超氧化物歧化酶等内源性抗氧化酶,展现出高抗氧化活性,从而保护细胞结构免受损伤,并减少胰腺、肝脏、大脑和肌肉等重要代谢器官的氧化损伤。花青素还能提高胰岛素敏感性、调节葡萄糖代谢以及调节参与碳水化合物消化的酶,进而降低糖尿病风险。此外,花青素通过抑制与2型糖尿病进展相关的炎症介质肿瘤坏死因子-α、白细胞介素-6和核因子-κB信号通路,抑制低度慢性炎症。临床证据支持临床前动物模型以及正在进行的人体试验,这些试验表明食用红薯有利于增强血糖控制并降低胰岛素抵抗。然而,花青素生物利用度低以及需要更有力的人体研究方面仍然存在挑战。除了花青素,红薯还含有多种有助于其代谢健康的营养成分。本综述强调了红薯作为糖尿病预防饮食中功能性食品成分的重要性,并鼓励采用能够维持其生物活性潜力的新加工方法。