Suppr超能文献

二元组强化学习以提高药物依从性。

Reinforcement Learning on Dyads to Enhance Medication Adherence.

作者信息

Xu Ziping, Jajal Hinal, Choi Sung Won, Nahum-Shani Inbal, Shani Guy, Psihogios Alexandra M, Hung Pei-Yao, Murphy Susan A

机构信息

Harvard University, Cambridge, MA, USA.

University of Michigan, Ann Arbor, MI, USA.

出版信息

Artif Intell Med Conf Artif Intell Med (2005-). 2025 Jun;15734:490-499. doi: 10.1007/978-3-031-95838-0_48. Epub 2025 Jun 23.

Abstract

Medication adherence is critical for the recovery of adolescents and young adults (AYAs) who have undergone hematopoietic cell transplantation. However, maintaining adherence is challenging for AYAs after hospital discharge, who experience both individual (e.g. physical and emotional symptoms) and interpersonal barriers (e.g., relational difficulties with their care partner, who is often involved in medication management). To optimize the effectiveness of a three-component digital intervention targeting both members of the dyad as well as their relationship, we propose a novel Multi-Agent Reinforcement Learning (MARL) approach to personalize the delivery of interventions. By incorporating the domain knowledge, the MARL framework, where each agent is responsible for the delivery of one intervention component, allows for faster learning compared with a flattened agent. Evaluation using a dyadic simulator environment, based on real clinical data, shows a significant improvement in medication adherence (approximately 3%) compared to purely random intervention delivery. The effectiveness of this approach will be further evaluated in an upcoming trial.

摘要

药物依从性对于接受造血细胞移植的青少年和青年(AYA)的康复至关重要。然而,出院后AYA维持依从性具有挑战性,他们面临个体(如身体和情绪症状)和人际障碍(如与通常参与药物管理的护理伙伴关系困难)。为了优化针对二元组双方及其关系的三组件数字干预的有效性,我们提出了一种新颖的多智能体强化学习(MARL)方法来个性化干预措施的提供。通过纳入领域知识,每个智能体负责提供一个干预组件的MARL框架与扁平智能体相比能够实现更快的学习。基于真实临床数据使用二元模拟器环境进行的评估表明,与纯粹随机提供干预相比,药物依从性有显著提高(约3%)。这种方法的有效性将在即将进行的试验中进一步评估。

相似文献

1
Reinforcement Learning on Dyads to Enhance Medication Adherence.二元组强化学习以提高药物依从性。
Artif Intell Med Conf Artif Intell Med (2005-). 2025 Jun;15734:490-499. doi: 10.1007/978-3-031-95838-0_48. Epub 2025 Jun 23.
10
Smartphone and tablet self management apps for asthma.用于哮喘的智能手机和平板电脑自我管理应用程序。
Cochrane Database Syst Rev. 2013 Nov 27;2013(11):CD010013. doi: 10.1002/14651858.CD010013.pub2.

本文引用的文献

1
A Deployed Online Reinforcement Learning Algorithm In An Oral Health Clinical Trial.一种应用于口腔健康临床试验的在线强化学习算法
Proc AAAI Conf Artif Intell. 2025;39(28):28792-28800. doi: 10.1609/aaai.v39i28.35143. Epub 2025 Apr 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验