Suppr超能文献

利用人工神经网络通过眼动评估数字阅读的重读效果。

Assessing the rereading effect of digital reading through eye movements using artificial neural networks.

作者信息

Xu Ying, Liang Mingzhen, Jin Yuanyuan, Wang Ligang, Gao Wenbin, Tao Ting

机构信息

CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China.

Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.

出版信息

Front Psychol. 2025 Aug 21;16:1576247. doi: 10.3389/fpsyg.2025.1576247. eCollection 2025.

Abstract

OBJECTIVE

This study aimed to investigate the differences in eye movement characteristics between first reading and rereading and to develop a neural network model for classifying these reading practices. The primary goal was to enhance the understanding of rereading identification and provide insights into assessing students' text familiarity.

METHODS

We compared eye movement metrics during first reading and rereading, focusing on parameters such as total reading time, fixation duration, regression size, regression count, and local eye movement behaviors within areas of interest (AOIs). Pupil size, the proportion of fixation duration, and regression duration within and across lines were also examined. A neural network model was constructed to classify the reading practices based on these metrics.

RESULTS

During rereading, students exhibited shorter total reading time, fixation durations, and fewer regression counts compared to first reading. Regression size was longer during rereading. Local eye movement behaviors within AOIs were also reduced. However, pupil size, the proportion of fixation duration, and regression duration within and across lines were not useful in identifying rereading. The neural network model achieved an accuracy of 0.769, precision of 0.774, recall of 0.788, and an F1-score of 0.781.

CONCLUSION

The findings demonstrate distinct eye movement patterns between first reading and rereading, highlighting the effectiveness of certain metrics in differentiating these practices. The neural network model provides a promising tool for rereading identification. These results expand our understanding of rereading behavior and offer valuable insights for assessing students' text familiarity.

摘要

目的

本研究旨在调查初次阅读和重读之间眼动特征的差异,并开发一种用于对这些阅读行为进行分类的神经网络模型。主要目标是增强对重读识别的理解,并为评估学生对文本的熟悉程度提供见解。

方法

我们比较了初次阅读和重读期间的眼动指标,重点关注总阅读时间、注视持续时间、回视幅度、回视次数以及感兴趣区域(AOI)内的局部眼动行为等参数。还检查了瞳孔大小、注视持续时间的比例以及行内和行间的回视持续时间。基于这些指标构建了一个神经网络模型来对阅读行为进行分类。

结果

与初次阅读相比,重读时学生的总阅读时间、注视持续时间更短,回视次数更少。重读时回视幅度更长。AOI内的局部眼动行为也减少了。然而,瞳孔大小、注视持续时间的比例以及行内和行间的回视持续时间在识别重读方面并无用处。神经网络模型的准确率为0.769,精确率为0.774,召回率为0.788,F1分数为0.781。

结论

研究结果表明初次阅读和重读之间存在明显的眼动模式,突出了某些指标在区分这些行为方面的有效性。神经网络模型为重读识别提供了一个有前景的工具。这些结果扩展了我们对重读行为的理解,并为评估学生对文本的熟悉程度提供了有价值的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6317/12409514/3f69a23c0865/fpsyg-16-1576247-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验