Shahidul Islam Sobuj, Dode Tatsuya, Kawashima Soma, Fukuoka Myu, Tsuruoka Takaaki, Nagahama Koji
Department of Nanobiochemistry, Frontiers of Innovative Research in Science and Technology (FIRST), Konan University 7-1-20 Minatojima-minamimachi, Chuo-ku Kobe 650-0047 Japan
RSC Adv. 2025 Sep 5;15(39):32143-32154. doi: 10.1039/d5ra02770e.
The application of nanoscale metal-organic frameworks (MOFs) in tissue engineering is receiving increased attention. As three-dimensional scaffolding materials that provide an appropriate extracellular microenvironment supporting the survival, proliferation, and organization of cells play a key role tissue engineering, hybridization of nanoscale MOFs with bulk hydrogels has led to the development of nanoscale MOF-combined hydrogels. However, development of nanoscale MOF-combined hydrogel scaffolds remains challenging. Generally, since the gelation properties of injectable hydrogels are delicate, the sol-gel transition behavior could be lost due to the influence of additives. To date, little progress has been made in the development of nanoscale MOF-combined injectable hydrogel scaffolds. Herein, we propose a novel injectable hydrogel scaffold generated by combining NU-1000 nanoscale MOFs with PLGA-PEG-PLGA/LAPONITE® nanocomposite hydrogels. The resultant PLGA-PEG-PLGA/LAPONITE®/l-Arg@NU-1000 hybrid hydrogels exhibited sustained slow release of l-arginine over 1 month. The precursor solution of PLGA-PEG-PLGA/LAPONITE®/l-Arg@NU-1000 undergoes rapid sol-gel transition upon exposure to body temperature, enabling focal administration of the hydrogel at desired locations in the body simple injection. The sustained l-arginine-slow release capability of the hybrid hydrogels results from the functionality of NU-1000 as a primary carrier and efficiently facilitates angiogenesis . The hybrid hydrogel exhibits highly specific functionality as a scaffold that cannot be achieved using NU-1000 alone or PLGA-PEG-PLGA/LAPONITE® hydrogels alone, thus indicating that the hybrid injectable hydrogels have the potential to become a new type of scaffold for tissue engineering.
纳米级金属有机框架(MOFs)在组织工程中的应用正受到越来越多的关注。作为提供适宜细胞外微环境以支持细胞存活、增殖和组织化的三维支架材料,在组织工程中发挥着关键作用,纳米级MOFs与块状水凝胶的杂交已导致纳米级MOF复合水凝胶的发展。然而,纳米级MOF复合水凝胶支架的开发仍然具有挑战性。一般来说,由于可注射水凝胶的凝胶化特性很微妙,添加剂的影响可能会导致溶胶-凝胶转变行为丧失。迄今为止,纳米级MOF复合可注射水凝胶支架的开发进展甚微。在此,我们提出了一种新型的可注射水凝胶支架,它是通过将NU-1000纳米级MOFs与PLGA-PEG-PLGA/LAPONITE®纳米复合水凝胶相结合而产生的。所得的PLGA-PEG-PLGA/LAPONITE®/l-精氨酸@NU-1000混合水凝胶在1个月以上的时间里表现出l-精氨酸的持续缓慢释放。PLGA-PEG-PLGA/LAPONITE®/l-精氨酸@NU-1000的前体溶液在暴露于体温时会经历快速的溶胶-凝胶转变,通过简单注射就能在体内所需位置进行水凝胶的局部给药。混合水凝胶持续的l-精氨酸缓慢释放能力源于NU-1000作为主要载体的功能,并有效地促进血管生成。该混合水凝胶作为一种支架表现出高度特异性的功能,这是单独使用NU-1000或单独使用PLGA-PEG-PLGA/LAPONITE®水凝胶无法实现的,因此表明这种混合可注射水凝胶有潜力成为一种新型的组织工程支架。