Suppr超能文献

通过机器学习和分子对接发现潜在的酪氨酸酶抑制剂,并对其活性和皮肤渗透性进行实验验证

Discovery of Potential Tyrosinase Inhibitors via Machine Learning and Molecular Docking with Experimental Validation of Activity and Skin Permeation.

作者信息

Kang Wenqingqing, Tong Henry H Y, Li Shu

机构信息

Centre of Artificial Intelligence Driven Drug Discovery, Faculty of Applied Science, Macao Polytechnic University, Macao SAR 999078, China.

出版信息

ACS Omega. 2025 Aug 19;10(34):38922-38932. doi: 10.1021/acsomega.5c04807. eCollection 2025 Sep 2.

Abstract

Tyrosinase, a copper-dependent oxidase, plays a critical role in melanin biosynthesis and is a target in skin-whitening cosmetics. Conventional inhibitors like arbutin and kojic acid are widely used but suffer from cytotoxicity, instability, and inconsistent efficacy, highlighting the need for safer, more effective alternatives. In this study, two ligand-based machine learning models were developed: one to predict the biological activity of compounds and the other to estimate specific pIC values. These models were employed to screen potential tyrosinase inhibitors from natural product libraries and FDA-approved drug databases. Subsequently, the molecules identified through machine learning screening were subjected to more precise multi tyrosinase-like structures molecular docking to refine the selection. We identified three top-ranking inhibitors, rhodanine-3-propionic acid, lodoxamide, and cytidine 5'-(dihydrogen phosphate), with strong binding affinities mediated by metal ion coordination and π-π interactions at the enzyme's active site. In vitro assays revealed that all three compounds exhibited higher inhibitory activity against mushroom tyrosinase compared to arbutin (IC = 38.37 mM), with rhodanine-3-propionic acid displaying the most potent inhibition (IC = 0.7349 mM). Furthermore, transdermal permeation experimental results confirmed that these compounds achieved markedly better skin permeability than commercial arbutin-based formulations, highlighting their potential as next-generation agents for inhibiting melanin production in cosmetic applications.

摘要

酪氨酸酶是一种铜依赖性氧化酶,在黑色素生物合成中起关键作用,是美白化妆品的作用靶点。像熊果苷和曲酸这样的传统抑制剂被广泛使用,但存在细胞毒性、不稳定性和疗效不一致的问题,这凸显了对更安全、更有效替代品的需求。在本研究中,开发了两种基于配体的机器学习模型:一种用于预测化合物的生物活性,另一种用于估计特定的pIC值。这些模型被用于从天然产物库和FDA批准的药物数据库中筛选潜在的酪氨酸酶抑制剂。随后,对通过机器学习筛选鉴定出的分子进行更精确的多酪氨酸酶样结构分子对接,以优化选择。我们鉴定出三种排名靠前的抑制剂,即罗丹宁-3-丙酸、洛度沙胺和胞苷5'-(磷酸二氢),它们在酶的活性位点通过金属离子配位和π-π相互作用介导具有很强的结合亲和力。体外试验表明,与熊果苷(IC = 38.37 mM)相比,这三种化合物对蘑菇酪氨酸酶均表现出更高的抑制活性,其中罗丹宁-3-丙酸表现出最强的抑制作用(IC = 0.7349 mM)。此外,透皮渗透实验结果证实,这些化合物的皮肤渗透性明显优于市售的基于熊果苷的配方,突出了它们作为化妆品应用中抑制黑色素生成的下一代制剂的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5324/12409553/16a5316ba1dd/ao5c04807_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验