Baptista João, Schneider Ricardo, Rossi de Aguiar Kelen Menezes Flores, Módenes Aparecido Nivaldo, Scheufele Fabiano Bisinella
Federal University of TechnologyParanáUTFPR, Graduate Program in Chemical and Biotechnological Processes (PPGQB), Rua Cristo Rei, 19, Vila Becker, Toledo 85902-490, Paraná, Brazil.
Group of Polymers and Nanostructures(GPAN), Federal University of TechnologyParanáUTFPR, Rua Cristo Rei, 19, Vila Becker, Toledo 85902-490, Paraná, Brazil.
ACS Omega. 2025 Aug 18;10(34):38890-38901. doi: 10.1021/acsomega.5c04653. eCollection 2025 Sep 2.
Mesoporous carbon materials were synthesized by using sucrose as a carbon source and hydrophilic Aerosil 380 as a hard template. A two-stage optimization process based on the response surface methodology using a central composite design (RSM-CCD) was employed to enhance the adsorption performance of the material for the crystal violet (CV) dye. The first stage of optimization yielded a maximum adsorption capacity of 155.4 mg g under carbonization conditions of 800 °C, 18.41 °C min, and 60 min. Further, optimization of sucrose (23% m/V) and silica template (17.07% m/V) concentrations led to a significantly higher capacity of 223.5 mg g. Characterization techniques confirmed the formation of amorphous graphitic structure (XRD), thermal decomposition of the organic phase near 350 °C (TGA-DTG), and effective Aerosil 380 removal confirmed by EDS and LIBS. Morphological and structural analyses using scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM) revealed a disordered mesoporous structure with turbostratic carbon layers. The optimized carbon exhibited a hierarchical mesoporous structure, with an of 607.8 m g, of 1.458 cm g, and an average of 9.6 nm, demonstrating strong potential for micropollutant adsorption applications.
以蔗糖为碳源、亲水性气相二氧化硅380为硬模板合成了介孔碳材料。采用基于响应面法的两阶段优化过程,利用中心复合设计(RSM-CCD)提高材料对结晶紫(CV)染料的吸附性能。优化的第一阶段在800℃、18.41℃/min和60min的碳化条件下获得了155.4mg/g的最大吸附容量。此外,对蔗糖(23%m/V)和二氧化硅模板(17.07%m/V)浓度的优化导致容量显著提高,达到223.5mg/g。表征技术证实了非晶石墨结构的形成(XRD)、350℃附近有机相的热分解(TGA-DTG),以及通过EDS和LIBS确认的有效去除气相二氧化硅380。使用扫描电子显微镜(SEM)和高分辨率透射电子显微镜(HRTEM)进行的形态和结构分析揭示了具有乱层碳层的无序介孔结构。优化后的碳呈现出分级介孔结构,比表面积为607.8m²/g,孔体积为1.458cm³/g,平均孔径为9.6nm,在微污染物吸附应用中显示出强大的潜力。