Suppr超能文献

YOLO-Pika:一种融合Fusion_Block和多尺度融合FPN的轻量化YOLOv8n改进模型及其在高原鼠兔精确检测中的应用

YOLO-Pika: a lightweight improved model of YOLOv8n incorporating Fusion_Block and multi-scale fusion FPN and its application in the precise detection of plateau pikas.

作者信息

Liu Yihao, Zhao Jianyun, Xu Changjun, Hou Yuedi, Jiang Yuxiang

机构信息

College of Geological Engineering, Qinghai University, Xining, China.

Qinghai Provincial Key Laboratory of Geospatial Information Technology and Application, Department of Natural Resources of Qinghai Province, Xining, China.

出版信息

Front Plant Sci. 2025 Aug 20;16:1607492. doi: 10.3389/fpls.2025.1607492. eCollection 2025.

Abstract

The plateau pika () is a keystone species on the Qinghai-Tibet Plateau, and its population density-typically inferred from burrow counts-requires rapid, low-cost monitoring. We propose YOLO-Pika, a lightweight detector built on YOLOv8n that integrates (1) a Fusion_Block into the backbone, leveraging high-dimensional mapping and fine-grained gating to enhance feature representation with negligible computational overhead, and (2) an MS_Fusion_FPN composed of multiple MSEI modules for multi-scale frequency-domain fusion and edge enhancement. On a plateau pika burrow dataset, YOLO-Pika increases mAP50 by 3.4 points and mAP50-95 by 5.0 points while reducing parameters by 22.7% and FLOPs by 0.01%; AP improves for small, medium, and large targets. On a public Brandt's vole hole dataset, it achieves a further 4.9-point gain in mAP50 and reduces false detections from localization errors, redundancy, and background noise by 30-50%. Compared with five state-of-the-art lightweight detectors (including YOLOv10), YOLO-Pika attains the highest detection accuracy with the fewest parameters. These results show that YOLO-Pika balances real-time performance, detection precision, and deployment feasibility, offering a practical, scalable solution for rodent burrow detection and alpine grassland damage assessment with strong cross-regional generalization.

摘要

高原鼠兔是青藏高原的关键物种,其种群密度通常通过洞穴数量推断,需要快速、低成本的监测。我们提出了YOLO - Pika,这是一种基于YOLOv8n构建的轻量级检测器,它集成了:(1)一个Fusion_Block到主干中,利用高维映射和细粒度门控来增强特征表示,同时计算开销可忽略不计;(2)一个由多个MSEI模块组成的MS_Fusion_FPN,用于多尺度频域融合和边缘增强。在高原鼠兔洞穴数据集上,YOLO - Pika将mAP50提高了3.4个百分点,mAP50 - 95提高了5.0个百分点,同时参数减少了22.7%,FLOPs减少了0.01%;小、中、大目标的AP均有所提高。在公开的布氏田鼠洞穴数据集上,它在mAP50上进一步提高了4.9个百分点,并将定位错误、冗余和背景噪声导致的误检减少了30 - 50%。与五个最先进的轻量级检测器(包括YOLOv10)相比,YOLO - Pika以最少的参数实现了最高的检测精度。这些结果表明,YOLO - Pika在实时性能、检测精度和部署可行性之间取得了平衡,为啮齿动物洞穴检测和高山草原破坏评估提供了一种实用、可扩展的解决方案,具有很强的跨区域泛化能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验