Li Jingwen, Song Xiangfei, Yao Lishan
College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China.
Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.
Magn Reson Lett. 2024 Dec 6;5(2):200173. doi: 10.1016/j.mrl.2024.200173. eCollection 2025 May.
Nuclear magnetic resonance (NMR) serves as a powerful tool for studying both the structure and dynamics of proteins. The NOE method, alongside residual dipolar; coupling, paramagnetic effects, -coupling, and other related techniques, has reached a level of maturity that allows for the determination of protein structures. Furthermore, NMR relaxation methods prove to be highly effective in characterizing protein dynamics across various timescales. The properties of protein systems are dictated by intra- and intermolecular interactions among atoms, which involve covalent bonds, hydrogen bonds (H-bonds), electrostatic interactions, and van der Waals forces. Multiple NMR approaches have been developed to measure noncovalent interactions, and this paper offers a concise overview of noncovalent interaction measurements using NMR, with a specific emphasis on the advancements accomplished in our laboratory.
核磁共振(NMR)是研究蛋白质结构和动力学的强大工具。NOE方法与剩余偶极耦合、顺磁效应、耦合及其他相关技术已达到成熟水平,可用于确定蛋白质结构。此外,NMR弛豫方法在表征不同时间尺度下的蛋白质动力学方面被证明非常有效。蛋白质系统的性质由原子间的分子内和分子间相互作用决定,这些相互作用涉及共价键、氢键(H键)、静电相互作用和范德华力。已经开发了多种NMR方法来测量非共价相互作用,本文简要概述了使用NMR进行的非共价相互作用测量,特别强调了我们实验室取得的进展。