Suppr超能文献

深入探究用于宫颈癌检测和分类的深度学习方法。

Deep dive into deep learning methods for cervical cancer detection and classification.

作者信息

Patre Pooja, Verma Dipti

机构信息

Computer Science and Engineering, Vishwavidyalaya Engineering College Ambikapur, Chhattisgarh, Ambikapur, India.

University Teaching Department, Chhattisgarh Swami Vivekanand Technical University, Bhilai, India.

出版信息

Rep Pract Oncol Radiother. 2025 Aug 7;30(3):396-416. doi: 10.5603/rpor.106148. eCollection 2025.

Abstract

Cervical cancer continues to pose a significant global health challenge, highlighting the urgent need for accurate and efficient diagnostic techniques. Recent progress in deep learning has demonstrated considerable potential in improving the detection and classification of cervical cancer. This review presents a thorough analysis of deep learning methods utilized for cervical cancer diagnosis, with an emphasis on critical approaches, evaluation metrics, and the ongoing challenges faced in the field. We explore various deep learning architectures, particularly convolutional neural networks (CNNs), and their applications in the segmentation and classification of cervical cytology images. Key performance indicators, such as accuracy, sensitivity, specificity, and the area under the curve (AUC), are reviewed to assess the effectiveness of these models. Despite advancements, challenges like limited annotated datasets, inconsistencies in medical imaging, and the demand for more resilient models remain. Strategies like data augmentation, transfer learning, and semi-supervised learning are examined as potential solutions. This review synthesizes current research to guide future studies and clinical implementations, ultimately advancing early detection and treatment of cervical cancer through cutting-edge deep learning technologies.

摘要

宫颈癌仍然是一项重大的全球健康挑战,凸显了对准确高效诊断技术的迫切需求。深度学习的最新进展已显示出在改善宫颈癌检测和分类方面的巨大潜力。本综述对用于宫颈癌诊断的深度学习方法进行了全面分析,重点关注关键方法、评估指标以及该领域面临的持续挑战。我们探讨了各种深度学习架构,特别是卷积神经网络(CNN)及其在宫颈细胞学图像分割和分类中的应用。对诸如准确率、灵敏度、特异性和曲线下面积(AUC)等关键性能指标进行了综述,以评估这些模型的有效性。尽管取得了进展,但仍存在诸如标注数据集有限、医学成像不一致以及对更具弹性模型的需求等挑战。数据增强、迁移学习和半监督学习等策略作为潜在解决方案进行了研究。本综述综合了当前研究,以指导未来的研究和临床应用,最终通过前沿的深度学习技术推进宫颈癌的早期检测和治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c17a/12413234/11e38023e777/rpor-30-3-396f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验