Suppr超能文献

基于模拟的免疫数字孪生系统评估。

Simulation-based assessment of digital twin systems for immunisation.

作者信息

El-Warrak Leonardo de Oliveira, Miceli de Farias Claudio, De Azevedo Costa Victor Hugo Dias Macedo

机构信息

COPPE - Graduate School and Research in Engineering, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.

FEN - Graduate School in Engineering, State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil.

出版信息

Front Digit Health. 2025 Aug 22;7:1603550. doi: 10.3389/fdgth.2025.1603550. eCollection 2025.

Abstract

BACKGROUND

This paper presents the application of simulation to assess the functionality of a proposed Digital Twin (DT) architecture for immunisation services in primary healthcare centres. The solution is based on Industry 4.0 concepts and technologies, such as IoT, machine learning, and cloud computing, and adheres to the ISO 23247 standard.

METHODS

The system modelling is carried out using the Unified Modelling Language (UML) to define the workflows and processes involved, including vaccine storage temperature monitoring and population vaccination status tracking. The proposed architecture is structured into four domains: observable elements/entities, data collection and device control, digital twin platform, and user domain. To validate the system's performance and feasibility, simulations are conducted using SimPy, enabling the evaluation of its response under various operational scenarios.

RESULTS

The system facilitates the storage, monitoring, and visualisation of data related to the thermal conditions of ice-lined refrigerators (ILR) and thermal boxes. Additionally, it analyses patient vaccination coverage based on the official immunisation schedule. The key benefits include optimising vaccine storage conditions, reducing dose wastage, continuously monitoring immunisation coverage, and supporting strategic vaccination planning.

CONCLUSION

The paper discusses the future impacts of this approach on immunisation management and its scalability for diverse public health contexts. By leveraging advanced technologies and simulation, this digital twin framework aims to improve the performance and overall impact of immunization services.

摘要

背景

本文介绍了如何应用模拟来评估为基层医疗中心免疫服务所提议的数字孪生(DT)架构的功能。该解决方案基于工业4.0概念和技术,如物联网、机器学习和云计算,并遵循ISO 23247标准。

方法

使用统一建模语言(UML)进行系统建模,以定义所涉及的工作流程和过程,包括疫苗储存温度监测和人群疫苗接种状态跟踪。所提议的架构分为四个领域:可观察元素/实体、数据收集和设备控制、数字孪生平台以及用户领域。为了验证系统的性能和可行性,使用SimPy进行模拟,以便评估其在各种操作场景下的响应。

结果

该系统有助于存储、监测和可视化与内衬冰冰箱(ILR)和热盒热状况相关的数据。此外,它还根据官方免疫计划分析患者的疫苗接种覆盖率。主要好处包括优化疫苗储存条件、减少剂量浪费、持续监测免疫覆盖率以及支持战略疫苗接种规划。

结论

本文讨论了这种方法对免疫管理的未来影响及其在不同公共卫生背景下的可扩展性。通过利用先进技术和模拟,这个数字孪生框架旨在提高免疫服务的性能和整体影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d565/12411477/c0a0db5dbf28/fdgth-07-1603550-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验