Neupane Subash, Tripathi Himanshu, Mitra Shaswata, Bozorgzad Sean, Mittal Sudip, Rahimi Shahram, Amirlatifi Amin
Dept. of Computer Science and Engineering, Mississippi State University Potentia Analytics Inc.; Dave C. Swalm School of Chemical Engineering, Mississippi State University.
Proc IEEE Int Conf Big Data. 2024 Dec;2024:5050-5059. doi: 10.1109/bigdata62323.2024.10825266. Epub 2025 Jan 16.
This paper presents ClinicSum, a novel framework designed to automatically generate clinical summaries from patient-doctor conversations. It utilizes a two-module architecture: a retrieval-based filtering module that extracts Subjective, Objective, Assessment, and Plan (SOAP) information from conversation transcripts, and an inference module powered by fine-tuned Pre-trained Language Models (PLMs), which leverage the extracted SOAP data to generate abstracted clinical summaries. To fine-tune the PLM, we created a training dataset of consisting 1,473 conversations-summaries pair by consolidating two publicly available datasets, FigShare and MTS-Dialog, with ground truth summaries validated by Subject Matter Experts (SMEs). ClinicSum's effectiveness is evaluated through both automatic metrics (e.g., ROUGE, BERTScore) and expert human assessments. Results show that ClinicSum outperforms state-of-the-art PLMs, demonstrating superior precision, recall, and F-1 scores in automatic evaluations and receiving high preference from SMEs in human assessment, making it a robust solution for automated clinical summarization.
本文介绍了ClinicSum,这是一个旨在从医患对话中自动生成临床摘要的新颖框架。它采用了双模块架构:一个基于检索的过滤模块,从对话记录中提取主观、客观、评估和计划(SOAP)信息;以及一个由微调后的预训练语言模型(PLM)驱动的推理模块,该模块利用提取的SOAP数据生成抽象的临床摘要。为了微调PLM,我们通过合并两个公开可用的数据集FigShare和MTS-Dialog,并由主题专家(SME)验证了真实摘要,创建了一个由1473个对话-摘要对组成的训练数据集。通过自动指标(如ROUGE、BERTScore)和专家人工评估来评估ClinicSum的有效性。结果表明,ClinicSum优于现有最先进的PLM,在自动评估中展示出更高的精度、召回率和F1分数,并且在人工评估中获得了SME的高度认可,使其成为自动临床摘要生成的强大解决方案。