Yu Zixi, Ma Juntao, Yang Xiangfeng, Fu Shiqiang, Chen Guoyi, Pu Dexin, Chen Weiqing, Du Shengjie, Yu Zhiqiu, Ge Yansong, Fu Huahua, Ke Weijun, Fang Guojia
Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, China.
School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan, 430074, China.
Adv Mater. 2025 Sep 8:e12171. doi: 10.1002/adma.202512171.
Sequential deposition technique is widely used to fabricate perovskite films with large grain size in perovskite solar cells (PSCs). Residual lead halide (PbI) in the perovskite film tends to be decomposed into metallic lead (Pb) under long-term heating or light soaking. Here, a chiral levetiracetam (LEV) dopant containing α-amide and pyrrolidone groups is introduced into the PbI precursor solution. The carbonyl oxygen (labeled O1) and amide oxygen (labeled O2) in the pyrrolidone ring have significant electronegativity and form coordination bonds with Pb ions through electron transfer, thereby regulating the nucleation and crystallization process of perovskite. The chirality of LEV induces spatial selectivity in perovskite precursor coordination, promoting oriented growth along the (100) crystallographic facet. Additionally, it enables selective defect passivation, preferentially addressing Pb and I vacancies. Ultimately, LEV doping reduces the tripartite residual PbI in the perovskite film, including multi-interfaces and bulk. Besides, the resulted PSCs achieved a champion power conversion efficiency (PCE) of over 26% with a stabilized power output of 25.8% and maintained 90% of its initial PCE after maximum power point tracking for 1000 h. This study offers a novel research paradigm to advance the development of perovskite photovoltaics.
连续沉积技术被广泛用于在钙钛矿太阳能电池(PSC)中制备具有大晶粒尺寸的钙钛矿薄膜。钙钛矿薄膜中的残留卤化铅(PbI)在长期加热或光浸泡下容易分解为金属铅(Pb)。在此,将一种含有α-酰胺和吡咯烷酮基团的手性左乙拉西坦(LEV)掺杂剂引入到PbI前驱体溶液中。吡咯烷酮环中的羰基氧(标记为O1)和酰胺氧(标记为O2)具有显著的电负性,并通过电子转移与Pb离子形成配位键,从而调节钙钛矿的成核和结晶过程。LEV的手性在钙钛矿前驱体配位中诱导空间选择性,促进沿(100)晶面的定向生长。此外,它还能实现选择性缺陷钝化,优先处理Pb和I空位。最终,LEV掺杂减少了钙钛矿薄膜中的三方残留PbI,包括多界面和体相。此外,所制备的PSC实现了超过26%的冠军功率转换效率(PCE),稳定功率输出为25.8%,在最大功率点跟踪1000小时后保持其初始PCE的90%。这项研究为推进钙钛矿光伏的发展提供了一种新的研究范式。