Suppr超能文献

TMBquant:一种可解释的人工智能驱动的工具,推动跨异质样本的肿瘤突变负担量化。

TMBquant: an explainable AI-powered caller advancing tumor mutation burden quantification across heterogeneous samples.

作者信息

Wang Shenjie, Wang Xiaonan, Zhu Xiaoyan, Wang Xuwen, Liu Yuqian, Zhao Minchao, Chang Zhili, Shao Yang, Zhang Haitao, Yang Shuanying, Wang Jiayin

机构信息

Department of Respiratory Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, Xiwu Road, Xincheng District, Xi'an 710004, China.

School of Computer Science and Technology, Xi'an Jiaotong University, 28 Xianning West Road, Beilin, Xi'an 710049, China.

出版信息

Brief Bioinform. 2025 Aug 31;26(5). doi: 10.1093/bib/bbaf455.

Abstract

Accurate tumor mutation burden (TMB) quantification is critical for immunotherapy stratification, yet remains challenging due to variability across sequencing platforms, tumor heterogeneity, and variant calling pipelines. Here, we introduce TMBquant, an explainable AI-powered caller designed to optimize TMB estimation through dynamic feature selection, ensemble learning, and automated strategy adaptation. Built upon the H2O AutoML framework, TMBquant integrates variant features, minimizes classification errors, and enhances both accuracy and stability across diverse datasets. We benchmarked TMBquant against nine widely used variant callers, including traditional tools (e.g. Mutect2, VarScan2, Strelka2) and recent AI-based methods (DeepSomatic, Octopus), using 706 whole-exome sequencing tumor-control pairs. To evaluate clinical relevance, we further assessed TMBquant through survival analyses across immunotherapy-treated cohorts of non-small cell lung cancer (NSCLC), nasopharyngeal carcinoma (NPC), and the two NSCLC subtypes: lung adenocarcinoma and lung squamous cell carcinoma. In each cohort, TMBquant consistently achieved the highest hazard ratios, demonstrating superior patient stratification compared to all other methods. Importantly, TMBquant maintained robust predictive performance across both high-TMB (NSCLC) and low-TMB (NPC) settings, highlighting its generalizability across cancer types with distinct biological characteristics. These findings establish TMBquant as a reliable, reproducible, and clinically actionable tool for precision oncology. The software is open source and freely available at https://github.com/SomaticCaller/SomaticCaller. To enhance reproducibility, we provide detailed usage instructions and representative code snippets for TMBquant in the Methods section (see Code Availability).

摘要

准确的肿瘤突变负荷(TMB)定量对于免疫治疗分层至关重要,但由于测序平台之间的差异、肿瘤异质性和变异检测流程的不同,其定量仍具有挑战性。在此,我们介绍了TMBquant,这是一种基于可解释人工智能的变异检测工具,旨在通过动态特征选择、集成学习和自动策略调整来优化TMB估计。TMBquant基于H2O AutoML框架构建,整合了变异特征,最大限度地减少分类错误,并提高了跨不同数据集的准确性和稳定性。我们使用706对全外显子测序肿瘤-对照样本,将TMBquant与九种广泛使用的变异检测工具进行了基准测试,其中包括传统工具(如Mutect2、VarScan2、Strelka2)和最近基于人工智能的方法(DeepSomatic、Octopus)。为了评估临床相关性,我们通过对非小细胞肺癌(NSCLC)、鼻咽癌(NPC)以及NSCLC的两个亚型:肺腺癌和肺鳞癌的免疫治疗队列进行生存分析,进一步评估了TMBquant。在每个队列中,TMBquant始终获得最高的风险比,与所有其他方法相比,显示出卓越的患者分层能力。重要的是,TMBquant在高TMB(NSCLC)和低TMB(NPC)环境中均保持了强大的预测性能,突出了其在具有不同生物学特征的癌症类型中的通用性。这些发现确立了TMBquant作为一种可靠、可重复且具有临床可操作性的精准肿瘤学工具。该软件是开源的,可在https://github.com/SomaticCaller/SomaticCaller上免费获取。为了提高可重复性,我们在方法部分提供了TMBquant的详细使用说明和代表性代码片段(见代码可用性)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b7b/12415849/f5ee1a471068/bbaf455f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验