Morris M, Ralston G B
Biophys Chem. 1985 Nov;23(1-2):49-61. doi: 10.1016/0301-4622(85)80063-6.
Nonlinear regression is used to fit the omega function vs. protein concentration curves (first described by B.K. Milthorpe, P.D. Jeffrey and L.W. Nichol, Biophys. Chem. 3 (1975) 169) obtained from sedimentation equilibrium experiments on self-associating macromolecules. Nonlinear regression allows the direct fit of these curves with discrete or indefinite self-association reaction models in order to obtain values for the equilibrium constants and second virial coefficient. The method is independent of the choice of reference concentration and avoids the original method of extrapolating an omega function curve to zero concentration and then using the extrapolated value to construct a monomer activity curve used for analysis. This extrapolation can become very difficult for mild to strong self-associations where incorrectly extrapolated values lead to systematic error in the monomer activity curves. The method is applied to results from a mild, indefinite self-association, exemplified by the self-association of human spectrin, and to computer-simulated data of weak, mild and strong, indefinite self-associations.
非线性回归用于拟合通过自缔合大分子沉降平衡实验得到的ω函数与蛋白质浓度曲线(最初由B.K.米尔索普、P.D.杰弗里和L.W.尼科尔描述,《生物物理化学》3 (1975) 169)。非线性回归允许将这些曲线直接与离散或不确定的自缔合反应模型进行拟合,以便获得平衡常数和第二维里系数的值。该方法与参考浓度的选择无关,并且避免了将ω函数曲线外推至零浓度,然后使用外推值构建用于分析的单体活度曲线的原始方法。对于轻度到强自缔合,这种外推可能变得非常困难,因为外推值错误会导致单体活度曲线出现系统误差。该方法应用于轻度、不确定自缔合的结果,以人血影蛋白的自缔合为例,以及弱、轻度和强、不确定自缔合的计算机模拟数据。