Suppr超能文献

CC-TransXNet:一种用于从眼底图像中自动分割视杯和视盘的混合卷积神经网络-Transformer网络

CC-TransXNet: a hybrid CNN-transformer network for automatic segmentation of optic cup and optic disk from fundus images.

作者信息

Yuan Zhongzheng, Wang Jinke, Xu Yukun, Xu Min

机构信息

Department of Software Engineering, Harbin University of Science and Technology, Weihai, 264300, China.

Weihai Municipal Hospital, Affiliated to Shandong University, Weihai, 264299, China.

出版信息

Med Biol Eng Comput. 2025 Apr;63(4):1027-1044. doi: 10.1007/s11517-024-03244-3. Epub 2024 Nov 27.

Abstract

Accurate segmentation of the optic disk (OD) and optic cup (OC) regions of the optic nerve head is a critical step in glaucoma diagnosis. Existing architectures based on convolutional neural networks (CNNs) still suffer from insufficient global information and poor generalization ability to small sample datasets. Besides, advanced transformer-based models, although capable of capturing global image features, perform poorly in medical image segmentation due to numerous parameters and insufficient local spatial information. To address the above two problems, we propose an innovative W-shaped hybrid network framework, CC-TransXNet, which combines the advantages of CNN and transformer. Firstly, by employing TransXNet and improved ResNet as feature extraction modules, the network considers local and global features to enhance its generalization ability. Secondly, the convolutional block attention module (CBAM) is introduced in the residual structure to improve the ability to recognize the OD and OC by applying attention in both the channel and spatial dimensions. Thirdly, the Contextual Attention (CoT) self-attention mechanism is used in the skip connection to adaptively allocate attention to the contextual information, further enhancing the segmentation's accuracy. We conducted experiments on four publicly available datasets (REFUGE 2, RIM-ONE DL, GAMMA, and Drishti-GS). Compared with the traditional U-Net, CNN, and transformer-based networks, our proposed CC-TransXNet improves the segmentation accuracy and significantly enhances the generalization ability on small datasets. Moreover, CC-TransXNet effectively controls the number of parameters in the model through optimized design to avoid the risk of overfitting, proving its potential for efficient segmentation.

摘要

对视神经乳头的视盘(OD)和视杯(OC)区域进行准确分割是青光眼诊断的关键步骤。现有的基于卷积神经网络(CNN)的架构仍然存在全局信息不足以及对小样本数据集泛化能力差的问题。此外,基于先进Transformer的模型虽然能够捕捉全局图像特征,但由于参数众多且局部空间信息不足,在医学图像分割中表现不佳。为了解决上述两个问题,我们提出了一种创新的W形混合网络框架CC-TransXNet,它结合了CNN和Transformer的优点。首先,通过采用TransXNet和改进的ResNet作为特征提取模块,该网络兼顾局部和全局特征以增强其泛化能力。其次,在残差结构中引入卷积块注意力模块(CBAM),通过在通道和空间维度上应用注意力来提高对视盘和视杯的识别能力。第三,在跳跃连接中使用上下文注意力(CoT)自注意力机制,以自适应地将注意力分配给上下文信息,进一步提高分割的准确性。我们在四个公开可用的数据集(REFUGE 2、RIM-ONE DL、GAMMA和Drishti-GS)上进行了实验。与传统的U-Net、基于CNN和Transformer的网络相比,我们提出的CC-TransXNet提高了分割精度,并显著增强了在小数据集上的泛化能力。此外,CC-TransXNet通过优化设计有效控制了模型中的参数数量,避免了过拟合风险,证明了其在高效分割方面的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验