Yin Ke, Ma Li, Ni Ping, Liao Guanyi, Peng Hong, Guo Jinjun
Department of Radiology, Bishan Hospital of Chongqing Medical University, Chongqing, China.
Department of Gastroenterology department, Bishan Hospital of Chongqing Medical University, Chongqing, China.
Abdom Radiol (NY). 2025 Sep 8. doi: 10.1007/s00261-025-05190-6.
This study aimed to create and validate a nomogram to predict early recurrence (ER) in Colorectal cancer (CRC) patients by combining CT-derived abdominal fat parameters with clinical and pathological characteristics.
We conducted a retrospective analysis of 206 CRC patients, dividing them into training (n = 146) and validation (n = 60) cohorts. We quantified abdominal fat parameters, including subcutaneous adipose tissue index (SATI) and visceral adipose tissue index (VATI), using semi-automatic software on CT images at the level of the third lumbar vertebra (L3). We calculated the liver fat fraction (LFF) based on the liver CT value (LFF% = -0.58 × [CT-HU] + 38.2). Finally, we performed Cox regression analysis to identify independent predictors of ER. We constructed a nomogram based on these predictors and evaluated its performance using calibration curves, the concordance index (C-index), and area under the curve (AUC). Internal validation was performed using a 1000-bootstrap resampling method.
LFF, VATI, CEA level, and lymphovascular invasion (LVI) were independent risk factors for ER. The calibration curve showed good concordance, with C-indices of 0.866 (95% CI: 0.808-0.924) and 0.825 (95% CI: 0.736-0.914) in the training and validation cohorts, respectively. Risk stratification effectively distinguished low- and high-risk groups (P < 0.001 for both).
A nomogram combines CT-derived abdominal fat parameters with clinical data showed good performance in predicting ER in CRC patients, and provides a tool for personalized monitoring and treatment strategies.
本研究旨在通过将CT衍生的腹部脂肪参数与临床和病理特征相结合,创建并验证一种用于预测结直肠癌(CRC)患者早期复发(ER)的列线图。
我们对206例CRC患者进行了回顾性分析,将他们分为训练组(n = 146)和验证组(n = 60)。我们使用半自动软件在第三腰椎(L3)水平的CT图像上量化腹部脂肪参数,包括皮下脂肪组织指数(SATI)和内脏脂肪组织指数(VATI)。我们根据肝脏CT值计算肝脏脂肪分数(LFF)(LFF% = -0.58 × [CT-HU] + 38.2)。最后,我们进行Cox回归分析以确定ER的独立预测因素。我们基于这些预测因素构建了列线图,并使用校准曲线、一致性指数(C指数)和曲线下面积(AUC)评估其性能。使用1000次自抽样重采样方法进行内部验证。
LFF、VATI、癌胚抗原(CEA)水平和淋巴管侵犯(LVI)是ER的独立危险因素。校准曲线显示出良好的一致性,训练组和验证组的C指数分别为0.866(95%CI:0.808 - 0.924)和0.825(95%CI:0.736 - 0.914)。风险分层有效地区分了低风险和高风险组(两组P均<0.001)。
一种将CT衍生的腹部脂肪参数与临床数据相结合的列线图在预测CRC患者的ER方面表现良好,并为个性化监测和治疗策略提供了一种工具。