Prakash Anubhav, Raman Sukanya, Kaushik Raman, Manchanda Pallavi, Iyer Anton S, Ladher Raj K
National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India.
Trivedi School of Biosciences, Ashoka University, Plot No. 2, Rajiv Gandhi Education City, National Capital Region P.O. Rai, Sonipat Haryana, India.
PLoS Biol. 2025 Sep 9;23(9):e3003350. doi: 10.1371/journal.pbio.3003350. eCollection 2025 Sep.
Morphogenetic information arises from a combination of genetically encoded cellular properties and emergent cellular behaviors. The spatio-temporal implementation of this information is critical to ensure robust, reproducible tissue shapes, yet the principles underlying its organization remain unknown. We investigated this principle using the mouse auditory epithelium, the organ of Corti (OC). OC consists of a sensory domain, which transduces sound through polar mechanosensory hair cells (HC), part of a mosaic with supporting cells (SC). On either side of the sensory domain are non-sensory domains. These domains undergo cellular rearrangements, which, together, lead to a spiral cochlea that contains planar polarized HCs. This makes the mammalian cochlea a compelling system to understand coordination across spatial scales. Using genetic and ex vivo approaches, we found patterning of OC into sensory and non-sensory domains is associated with a combinatorial expression of adhesion molecules, which underpins OC into spatially defined compartments, enabling planar cell polarity (PCP) cues to regulate compartment-specific organization. Through compartment-specific knockouts of the PCP protein, Vangl2, we find evidence of compartment coupling, a non-linear influence on the organization within one compartment when cellular organization is disrupted in another. In the OC, compartment coupling originates from vinculin-dependent junctional mechanics, coordinating cellular dynamics across spatial scales.
形态发生信息源于遗传编码的细胞特性与新兴细胞行为的结合。这些信息的时空实现对于确保稳健、可重复的组织形态至关重要,但其组织的潜在原理仍然未知。我们使用小鼠听觉上皮——柯蒂氏器(OC)来研究这一原理。OC由一个感觉区域组成,该区域通过极性机械感觉毛细胞(HC)将声音转化为信号,HC是与支持细胞(SC)组成的镶嵌体的一部分。感觉区域的两侧是非感觉区域。这些区域会发生细胞重排,共同形成一个包含平面极化HC的螺旋状耳蜗。这使得哺乳动物耳蜗成为理解跨空间尺度协调的一个引人注目的系统。通过基因和体外实验方法,我们发现OC分化为感觉和非感觉区域与粘附分子的组合表达有关,这将OC划分为空间定义的隔室,使平面细胞极性(PCP)线索能够调节隔室特异性组织。通过对PCP蛋白Vangl2进行隔室特异性敲除,我们发现了隔室耦合的证据,即当一个隔室中的细胞组织受到破坏时,对另一个隔室中的组织会产生非线性影响。在OC中,隔室耦合源于纽蛋白依赖性连接力学,协调跨空间尺度的细胞动力学。