Graduate School of Biostudies, Kyoto University, Kyoto, Japan.
Department of Speech and Hearing Sciences and Disorders, Faculty of Health and Medical Sciences, Kyoto University of Advanced Science, Kyoto, Japan.
Elife. 2021 Mar 5;10:e61092. doi: 10.7554/eLife.61092.
A notable example of spiral architecture in organs is the mammalian cochlear duct, where the morphology is critical for hearing function. Genetic studies have revealed necessary signaling molecules, but it remains unclear how cellular dynamics generate elongating, bending, and coiling of the cochlear duct. Here, we show that extracellular signal-regulated kinase (ERK) activation waves control collective cell migration during the murine cochlear duct development using deep tissue live-cell imaging, Förster resonance energy transfer (FRET)-based quantitation, and mathematical modeling. Long-term FRET imaging reveals that helical ERK activation propagates from the apex duct tip concomitant with the reverse multicellular flow on the lateral side of the developing cochlear duct, resulting in advection-based duct elongation. Moreover, model simulations, together with experiments, explain that the oscillatory wave trains of ERK activity and the cell flow are generated by mechanochemical feedback. Our findings propose a regulatory mechanism to coordinate the multicellular behaviors underlying the duct elongation during development.
螺旋结构在器官中的一个显著例子是哺乳动物的耳蜗管,其形态对于听觉功能至关重要。遗传研究已经揭示了必要的信号分子,但细胞动力学如何产生耳蜗管的伸长、弯曲和卷曲仍然不清楚。在这里,我们使用深层组织活细胞成像、基于Förster 共振能量转移(FRET)的定量和数学建模显示,细胞外信号调节激酶(ERK)激活波控制了小鼠耳蜗管发育过程中的细胞集体迁移。长期的 FRET 成像显示,螺旋 ERK 激活从尖端管尖传播,同时伴随着发育中的耳蜗管侧面的反向多细胞流,导致基于平流的管伸长。此外,模型模拟与实验一起解释了 ERK 活性的振荡波列和细胞流是由机械化学反馈产生的。我们的发现提出了一种调节机制,以协调发育过程中导管伸长所涉及的细胞行为。