Shaimerdenova Darigash, Omaraliyeva Aigul, Tarabayev Baltash, Chakanova Zhanar, Iskakova Damira, Sarbassova Gaini, Kizatova Maigul, Anuarbekova Sandugash
Department of Science, LLP "Research and Production Enterprise "Innovator", Astana, Kazakhstan.
Technology of Food and Processing Industries, Saken Seifullin Kazakh Agrotechnical University, Kazakhstan.
PLoS One. 2025 Sep 9;20(9):e0331620. doi: 10.1371/journal.pone.0331620. eCollection 2025.
This study investigates the physicochemical, microbiological, and microstructural changes in soft wheat grain during germination under varying moisture conditions: moderately dry, moist, and wet. Pre-harvest sprouting can severely compromise grain quality and usability; however, understanding germination-induced changes offers insights into potential utilization strategies. Physical parameters-including thousand-kernel weight, test weight, and falling number-showed strong correlation with germination time, decreasing by 8.2%, 22%, and 74%, respectively. Microstructural analyses using optical microscopy, scanning electron microscopy (SEM), and Raman spectroscopy revealed substantial degradation of starch granule morphology and kernel structure, with compact vitreous endosperm becoming porous and disorganized as germination progressed. To optimize germination conditions for technological application, a central composite design with three factors (moisture, temperature, and time) was employed, analyzed using Statgraphics Centurion 19. Response surface modeling identified optimal conditions for starch content (22% moisture, 31°C, 84 h), protein content (21% moisture, 30°C, 72 h), and minimal microbial contamination (14% moisture, 33°C, 8 h). These findings provide a foundation for processing germinated soft wheat grain into value-added products, even when exposed to unfavorable harvest conditions.
本研究调查了软质小麦籽粒在不同水分条件下(适度干燥、湿润和潮湿)发芽过程中的物理化学、微生物和微观结构变化。收获前发芽会严重损害谷物品质和可用性;然而,了解发芽引起的变化有助于洞察潜在的利用策略。包括千粒重、容重和降落数值在内的物理参数与发芽时间呈现出强相关性,分别下降了8.2%、22%和74%。使用光学显微镜、扫描电子显微镜(SEM)和拉曼光谱进行的微观结构分析表明,随着发芽的进行,淀粉颗粒形态和籽粒结构出现了显著降解,致密的玻璃质胚乳变得多孔且无序。为了优化发芽条件以用于技术应用,采用了具有三个因素(水分、温度和时间)的中心复合设计,并使用Statgraphics Centurion 19进行分析。响应面建模确定了淀粉含量(22%水分、31°C、84小时)、蛋白质含量(21%水分、30°C、72小时)以及微生物污染最小化(14%水分、33°C、8小时)的最佳条件。这些发现为将发芽的软质小麦籽粒加工成增值产品奠定了基础,即使在面临不利收获条件时也是如此。