Suppr超能文献

使用MDSINE2从微生物组数据中学习生态系统规模的动态变化。

Learning ecosystem-scale dynamics from microbiome data with MDSINE2.

作者信息

Gibson Travis E, Kim Younhun, Acharya Sawal, Kaplan David E, DiBenedetto Nicholas, Lavin Richard, Berger Bonnie, Allegretti Jessica R, Bry Lynn, Gerber Georg K

机构信息

Division of Computational Pathology, Brigham and Women's Hospital, Boston, MA, USA.

Broad Institute of MIT and Harvard, Cambridge, MA, USA.

出版信息

Nat Microbiol. 2025 Sep 9. doi: 10.1038/s41564-025-02112-6.

Abstract

Although dynamical systems models are a powerful tool for analysing microbial ecosystems, challenges in learning these models from complex microbiome datasets and interpreting their outputs limit use. We introduce the Microbial Dynamical Systems Inference Engine 2 (MDSINE2), a Bayesian method that learns compact and interpretable ecosystems-scale dynamical systems models from microbiome timeseries data. Microbial dynamics are modelled as stochastic processes driven by interaction modules, or groups of microbes with similar interaction structure and responses to perturbations, and additionally, noise characteristics of data are modelled. Our open-source software package provides multiple tools for interpreting learned models, including phylogeny/taxonomy of modules, and stability, interaction topology and keystoneness. To benchmark MDSINE2, we generated microbiome timeseries data from two murine cohorts that received faecal transplants from human donors and were then subjected to dietary and antibiotic perturbations. MDSINE2 outperforms state-of-the-art methods and identifies interaction modules that provide insights into ecosystems-scale interactions in the gut microbiome.

摘要

尽管动态系统模型是分析微生物生态系统的强大工具,但从复杂的微生物组数据集中学习这些模型并解释其输出结果存在挑战,限制了其应用。我们引入了微生物动态系统推理引擎2(MDSINE2),这是一种贝叶斯方法,可从微生物组时间序列数据中学习紧凑且可解释的生态系统尺度动态系统模型。微生物动态被建模为由相互作用模块驱动的随机过程,或具有相似相互作用结构和对扰动响应的微生物组,此外,还对数据的噪声特征进行建模。我们的开源软件包提供了多种解释学习模型的工具,包括模块的系统发育/分类学、稳定性、相互作用拓扑和关键度。为了对MDSINE2进行基准测试,我们从两个小鼠队列中生成了微生物组时间序列数据,这些小鼠接受了人类供体的粪便移植,然后受到饮食和抗生素扰动。MDSINE2优于现有方法,并识别出能够洞察肠道微生物组生态系统尺度相互作用的相互作用模块。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验