Suppr超能文献

组合洛特卡-沃尔泰拉模型描述了单纯形中的微生物动态。

Compositional Lotka-Volterra describes microbial dynamics in the simplex.

机构信息

Department of Computer Science, Columbia University, New York, New York, United States of America.

Department of Computer Science, UCLA, Los Angeles, California, United States of America.

出版信息

PLoS Comput Biol. 2020 May 29;16(5):e1007917. doi: 10.1371/journal.pcbi.1007917. eCollection 2020 May.

Abstract

Dynamic changes in microbial communities play an important role in human health and disease. Specifically, deciphering how microbial species in a community interact with each other and their environment can elucidate mechanisms of disease, a problem typically investigated using tools from community ecology. Yet, such methods require measurements of absolute densities, whereas typical datasets only provide estimates of relative abundances. Here, we systematically investigate models of microbial dynamics in the simplex of relative abundances. We derive a new nonlinear dynamical system for microbial dynamics, termed "compositional" Lotka-Volterra (cLV), unifying approaches using generalized Lotka-Volterra (gLV) equations from community ecology and compositional data analysis. On three real datasets, we demonstrate that cLV recapitulates interactions between relative abundances implied by gLV. Moreover, we show that cLV is as accurate as gLV in forecasting microbial trajectories in terms of relative abundances. We further compare cLV to two other models of relative abundance dynamics motivated by common assumptions in the literature-a linear model in a log-ratio transformed space, and a linear model in the space of relative abundances-and provide evidence that cLV more accurately describes community trajectories over time. Finally, we investigate when information about direct effects can be recovered from relative data that naively provide information about only indirect effects. Our results suggest that strong effects may be recoverable from relative data, but more subtle effects are challenging to identify.

摘要

微生物群落的动态变化在人类健康和疾病中起着重要作用。具体来说,破译群落中微生物物种之间如何相互作用及其与环境的相互作用,可以阐明疾病的机制,这是一个通常使用群落生态学工具进行研究的问题。然而,此类方法需要测量绝对密度,而典型的数据集仅提供相对丰度的估计值。在这里,我们系统地研究了相对丰度单纯形中微生物动力学的模型。我们推导出了一个新的微生物动力学非线性动力系统,称为“组成”Lotka-Volterra (cLV),它统一了来自群落生态学和组成数据分析的广义 Lotka-Volterra (gLV)方程的方法。在三个真实数据集上,我们证明 cLV 再现了 gLV 所暗示的相对丰度之间的相互作用。此外,我们还表明,cLV 在预测相对丰度的微生物轨迹方面与 gLV 一样准确。我们进一步将 cLV 与文献中常见假设驱动的两种其他相对丰度动态模型进行比较——对数比变换空间中的线性模型和相对丰度空间中的线性模型,并提供证据表明 cLV 更准确地描述了随时间推移的群落轨迹。最后,我们研究了当关于直接效应的信息可以从仅提供间接效应信息的相对数据中恢复时的情况。我们的结果表明,从相对数据中可能可以恢复强效应,但更微妙的效应难以识别。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78e7/7325845/9d8339d649ef/pcbi.1007917.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验