Suppr超能文献

探索β-1,3-葡聚糖酶在甘蔗根通气组织发育中的作用。

Exploring the Role of β-1,3-Glucanase in Aerenchyma Development in Sugarcane Roots.

作者信息

Romim Grayce Hellen, Tavares Eveline Q P, Grandis Adriana, de Oliveira Lauana P, Demarco Diego, Gramegna Giovanna, Mira William V M, Navarro Bruno V, Buckeridge Marcos S

机构信息

Laboratório de Fisiologia Ecológica de Plantas, Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Brasil.

Laboratório de Anatomia Vegetal, Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Brasil.

出版信息

Ann Bot. 2025 Sep 10. doi: 10.1093/aob/mcaf216.

Abstract

BACKGROUND AND AIMS

Aerenchyma formation has emerged as a promising model for understanding cell wall modifications. Certain cells undergo programmed cell death (PCD), while others do not, suggesting the existence of a tightly regulated signaling dispersion mechanism. Cell-to-cell communication occurs via plasmodesmata, whose permeability is regulated by the deposition of callose (β-1,3-glucan) and its degradation by β-1,3-glucanase. These processes may be key to understanding the selection of specific cells, which modify their cell walls for aerenchyma formation. Therefore, this study aims to characterize the role of callose and β-1,3-glucanase during aerenchyma formation.

METHODS

Sugarcane roots were segmented into five 1cm sections and embedded in LR-White resin. Semi-thin sections were obtained, and immunolocalization was performed using monoclonal antibodies for the polysaccharides callose (β-1,3-glucan) and mixed-linkage β-1,3-1,4-glucan. The protein for in situ localization was chosen based on its ontology and protein domain structure. A super-resolution microscope was utilized to identify the antibody signal deposition pattern.

KEY RESULTS

The antibody signal against mixed-linkage β-1,3-1,4-glucan was continuously detected along the cell wall in the early root segments. Its removal and degradation became evident from the third segment onward, coinciding with aerenchyma formation. In contrast, callose exhibited a punctate signal, possibly marking regions of plasmodesmata. Callose degradation followed a similar pattern to that of mixed-linkage β-1,3-1,4-glucan (S3-S5), though its signal was less abundant. The β-1,3-glucanase showed peak signal from segment 3 to segment 4, accompanied by a punctate signal, suggesting its action at regions of plasmodesmata and callose degradation sites.

CONCLUSION

The presence of callose raises critical questions about how cells transmit signals and why only certain cells undergo PCD. Managing the permeability and selectivity of intercellular communication may be a key factor in various biological processes. Gaining insight into these mechanisms and identifying potential enzymes and polysaccharides could provide new perspectives for future research.

摘要

背景与目的

通气组织的形成已成为理解细胞壁修饰的一个有前景的模型。某些细胞会经历程序性细胞死亡(PCD),而其他细胞则不会,这表明存在一种严格调控的信号传播机制。细胞间通讯通过胞间连丝进行,其通透性由胼胝质(β-1,3-葡聚糖)的沉积及其被β-1,3-葡聚糖酶降解来调节。这些过程可能是理解特定细胞选择的关键,这些细胞会修饰其细胞壁以形成通气组织。因此,本研究旨在表征胼胝质和β-1,3-葡聚糖酶在通气组织形成过程中的作用。

方法

将甘蔗根切成五个1厘米长的片段,嵌入LR-White树脂中。制作半薄切片,并使用针对多糖胼胝质(β-1,3-葡聚糖)和混合连接的β-1,3-1,4-葡聚糖的单克隆抗体进行免疫定位。根据其本体和蛋白质结构域结构选择用于原位定位的蛋白质。利用超分辨率显微镜确定抗体信号沉积模式。

主要结果

在根部早期片段中,沿着细胞壁持续检测到针对混合连接的β-1,3-1,4-葡聚糖的抗体信号。从第三段开始,其去除和降解变得明显,这与通气组织的形成相吻合。相比之下,胼胝质呈现点状信号,可能标记胞间连丝区域。胼胝质的降解模式与混合连接的β-1,3-1,4-葡聚糖(S3-S5)相似,尽管其信号较少。β-1,3-葡聚糖酶在第3段到第4段显示出峰值信号,并伴有点状信号,表明其在胞间连丝区域和胼胝质降解位点发挥作用。

结论

胼胝质的存在引发了关于细胞如何传递信号以及为何只有某些细胞经历PCD的关键问题。控制细胞间通讯的通透性和选择性可能是各种生物学过程中的一个关键因素。深入了解这些机制并确定潜在的酶和多糖可为未来研究提供新的视角。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验