de Bruin Jonathan, Lombaers Peter, Kaandorp Casper, Teijema Jelle, van der Kuil Timo, Yazan Berke, Dong Angie, van de Schoot Rens
Department of Research and Data Management Services, Information Technology Services, Utrecht University, Utrecht, the Netherlands.
IDfuse, Utrecht 3526 KS, the Netherlands.
Patterns (N Y). 2025 Jul 3;6(7):101318. doi: 10.1016/j.patter.2025.101318. eCollection 2025 Jul 11.
ASReview LAB v.2 introduces an advancement in AI-assisted systematic reviewing by enabling collaborative screening with multiple experts ("a crowd of oracles") using a shared AI model. The platform supports multiple AI agents within the same project, allowing users to switch between fast general-purpose models and domain-specific, semantic, or multilingual transformer models. Leveraging the SYNERGY benchmark dataset, performance has improved significantly, showing a 24.1% reduction in loss compared to version 1 through model improvements and hyperparameter tuning. ASReview LAB v.2 follows user-centric design principles and offers reproducible, transparent workflows. It logs key configuration and annotation data while balancing full model traceability with efficient storage. Future developments include automated model switching based on performance metrics, noise-robust learning, and ensemble-based decision-making.
ASReview LAB v.2通过使用共享的人工智能模型与多位专家(“一群预言家”)进行协作筛选,在人工智能辅助系统综述方面取得了进展。该平台在同一项目中支持多个人工智能代理,允许用户在快速通用模型和特定领域、语义或多语言变压器模型之间切换。利用SYNERGY基准数据集,通过模型改进和超参数调整,性能有了显著提高,与版本1相比损失减少了24.1%。ASReview LAB v.2遵循以用户为中心的设计原则,提供可重复、透明的工作流程。它在记录关键配置和注释数据的同时,平衡了完整的模型可追溯性与高效存储。未来的发展包括基于性能指标的自动模型切换、抗噪声学习和基于集成的决策。