Suppr超能文献

基于杯芳烃/柱芳烃的控释药物系统的研究进展

Research progress on calixarene/pillararene-based controlled drug release systems.

作者信息

Yi Liu-Huan, Qin Jian, Lu Si-Ran, Yang Liu-Pan, Wang Li-Li, Yao Huan

机构信息

School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China.

出版信息

Beilstein J Org Chem. 2025 Sep 3;21:1757-1785. doi: 10.3762/bjoc.21.139. eCollection 2025.

Abstract

Intelligent controlled-release drug delivery systems that are responsive to various external stimuli have garnered significant interest from researchers and have broad applications in the biomedical field. Aromatic macrocycles, including calixarenes and pillararenes, are considered ideal candidates for the construction of supramolecular drug delivery systems because of their simple synthesis, ease of modification, electron-rich and hydrophobic cavities, and highly selective molecular recognition. In recent years, numerous supramolecular drug delivery systems utilizing aromatic macrocycles have been developed. This review article provides an overview of the advancements of controlled drug release systems based on host-guest selective recognition, self-assembly, and nano-valves by the use of of calixarenes and pillararenes from five perspectives: pH, light, enzyme, hypoxia, and multi-stimuli combination responses. Furthermore, the article projects the future clinical application prospects of controlled-release technologies, with the aim of offering a reference for the utilization of aromatic macrocycles in drug-controlled release applications.

摘要

对各种外部刺激有响应的智能控释药物递送系统已引起研究人员的极大兴趣,并在生物医学领域有广泛应用。包括杯芳烃和柱芳烃在内的芳香大环化合物,因其合成简单、易于修饰、富电子且疏水的空腔以及高度选择性的分子识别,被认为是构建超分子药物递送系统的理想候选物。近年来,已开发出许多利用芳香大环化合物的超分子药物递送系统。本文从pH、光、酶、缺氧和多刺激组合响应五个方面,综述了基于杯芳烃和柱芳烃的主客体选择性识别、自组装和纳米阀的控释药物系统的研究进展。此外,文章还展望了控释技术未来的临床应用前景,旨在为芳香大环化合物在药物控释应用中的利用提供参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/455e/12415917/614cf1d90018/Beilstein_J_Org_Chem-21-1757-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验