Li Yuqiang, Duan Yulong, Zhang Junbiao, Petropoulos Evangelos, Zhao Jianhua, Wu Fasi, Wang Lilong, Chen Yun, Wang Xuyang
State Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.
Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Tongliao, China.
Front Microbiol. 2025 Aug 25;16:1595810. doi: 10.3389/fmicb.2025.1595810. eCollection 2025.
While soil microorganisms underpin terrestrial ecosystem functioning, how their functional potential adapts across environmental gradients remains poorly understood, particularly for ubiquitous taxa. Employing a comprehensive metagenomic approach across China's six major terrestrial ecosystems (41 topsoil samples, 0-20 cm depth), we reveal a counterintuitive pattern: oligotrophic environments (deserts, karst) harbor microbiomes with significantly greater metabolic pathway diversity (KEGG) compared to resource-rich ecosystems. We provide a systematic catalog of key functional genes governing biogeochemical cycles in these soils, identifying: 6 core CAZyme genes essential for soil organic carbon (SOC) decomposition and biosynthesis; 62 nitrogen (N)-cycling genes (KOs) across seven critical enzymatic clusters; 15 sulfur (S)-cycling genes (KOs) within three key enzymatic clusters. These functional gene abundances exhibit distinct, geography-driven clustering patterns, strongly correlated with eight environmental drivers (latitude, NDVI, pH, EC, SOC, TN, C:N ratio, and MAP). This work provides a predictive framework and actionable genetic targets (e.g., specific CAZyme, N/S cycling genes) for potentially manipulating soil microbiomes to enhance ecosystem resilience and biogeochemical functions under stress.
虽然土壤微生物是陆地生态系统功能的基础,但人们对其功能潜力如何随环境梯度变化而适应仍知之甚少,尤其是对于常见的分类群。我们采用全面的宏基因组方法,对中国六大主要陆地生态系统(41个表层土壤样本,深度0 - 20厘米)进行研究,发现了一个与直觉相反的模式:与资源丰富的生态系统相比,贫营养环境(沙漠、喀斯特)中的微生物群落具有显著更高的代谢途径多样性(KEGG)。我们提供了这些土壤中控制生物地球化学循环的关键功能基因的系统目录,确定了:6个对土壤有机碳(SOC)分解和生物合成至关重要的核心碳水化合物活性酶(CAZyme)基因;七个关键酶簇中的62个氮(N)循环基因(KO);三个关键酶簇中的15个硫(S)循环基因(KO)。这些功能基因丰度呈现出明显的、受地理驱动的聚类模式,与八个环境驱动因素(纬度、归一化植被指数、pH值、电导率、SOC、总氮、碳氮比和年均降水量)密切相关。这项工作提供了一个预测框架和可操作的遗传靶点(例如,特定的CAZyme、氮/硫循环基因),用于潜在地操纵土壤微生物群落,以增强生态系统在压力下的恢复力和生物地球化学功能。