Bueno Jaime, Jiménez-Solano Alberto, Anaya Miguel, Carretero-Palacios Sol
Instituto de Ciencia de Materiales de Madrid, ICMM-CSIC C/Sor Juana Inés de la Cruz, 3 Madrid 28049 Spain
Departamento de Física, Universidad de Córdoba Edificio Einstein (C2), Campus de Rabanales Córdoba 14071 Spain.
RSC Adv. 2025 Sep 8;15(39):32497-32508. doi: 10.1039/d5ra05461c. eCollection 2025 Sep 5.
Perovskite light-emitting diodes (PeLEDs) have emerged as a promising technology for next-generation display and lighting applications, thanks to their remarkable colour purity, tunability, and ease of fabrication. In this work, we explore the incorporation of plasmonic spherical nanoparticles (NPs) directly embedded into the green-emitting CsPbBr perovskite layer in a PeLED as a strategy to enhance both its optical and electrical properties. We find that plasmonic effects directly boost spontaneous emission while also influencing charge carrier recombination dynamics. We present a rigorous theoretical electro-optical analysis to systematically investigate the impact of NP metal, size, and concentration on device performance, with particular emphasis on the role of photon recycling (PR). Our results demonstrate that embedding carefully designed silver (Ag) NPs, selected through rigorous theoretical modelling, into PeLEDs leads to enhanced device performance across a wide range of operating currents. Notably, we observe a 4-fold improvement in external quantum efficiency (EQE) at injection currents as low as 0.02 mA cm, and a 2-fold enhancement at 0.2 mA cm, attributed to increased radiative recombination. Furthermore, results suggest improved efficiency retention at higher injection levels, pointing to reduced current roll-off limitations and extended high-brightness operation. Additionally, PR plays a crucial role in mitigating optical losses and improving outcoupling efficiency, especially in plasmonic-enhanced systems, where scattering effects increase the prevalence of trapping states. These findings open up exciting possibilities for devices requiring energy-efficient, compact, and high-performance light sources, such as portable electronics and low-power displays.
钙钛矿发光二极管(PeLEDs)凭借其出色的色纯度、可调性和易于制造的特点,已成为下一代显示和照明应用的一项有前途的技术。在这项工作中,我们探索将直接嵌入PeLED中绿色发光CsPbBr钙钛矿层的等离子体球形纳米颗粒(NPs)作为一种增强其光学和电学性能的策略。我们发现等离子体效应直接促进自发发射,同时也影响电荷载流子复合动力学。我们进行了严格的理论电光分析,以系统地研究NP金属、尺寸和浓度对器件性能的影响,特别强调光子回收(PR)的作用。我们的结果表明,通过严格的理论建模选择,将精心设计的银(Ag)NPs嵌入PeLED中,可在很宽的工作电流范围内提高器件性能。值得注意的是,我们观察到在低至0.02 mA cm的注入电流下,外量子效率(EQE)提高了4倍,在0.2 mA cm时提高了2倍,这归因于辐射复合的增加。此外,结果表明在较高注入水平下效率保持有所改善,这表明电流滚降限制降低,高亮度操作得以扩展。此外,PR在减轻光学损耗和提高外耦合效率方面起着关键作用,特别是在等离子体增强系统中,散射效应增加了陷阱态的发生率。这些发现为需要节能、紧凑和高性能光源的设备,如便携式电子产品和低功耗显示器,开辟了令人兴奋的可能性。