Srivastava Shivani, Uberuaga Blas Pedro, Asta Mark
Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States.
Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.
J Phys Chem C Nanomater Interfaces. 2025 Aug 19;129(35):15749-15762. doi: 10.1021/acs.jpcc.5c02852. eCollection 2025 Sep 4.
Density functional theory (DFT) calculations are employed to investigate the formation energies, charge redistribution, and binding energies of iron-oxygen divacancies in magnetite (FeO) and hematite (FeO). For magnetite, we focus on the low-temperature phase to explore variations with local environments. Building on previous DFT calculations of the variations in formation energies for oxygen vacancies with local charge and spin order in magnetite, we extend this analysis to include octahedral iron vacancies before analyzing the iron-oxygen divacancies. We also assessed the relative stability of iron-oxygen divacancies by comparing their formation energies with those of individual vacancies. Our findings reveal a significant energetic driving force for the formation of divacancy clusters, particularly in magnetite, where divacancies in the +1 charge state exhibit formation energies comparable to those of neutral iron vacancies under oxidizing conditions. In hematite, the results indicate a strong tendency for oxygen vacancies to bind to iron vacancies. These results highlight the significance of iron-oxygen vacancy complexes in the transport properties of iron oxides, with particular relevance to diffusion mechanisms under irradiation conditions.
采用密度泛函理论(DFT)计算来研究磁铁矿(FeO)和赤铁矿(Fe₂O₃)中铁 - 氧双空位的形成能、电荷重新分布和结合能。对于磁铁矿,我们聚焦于低温相以探究其随局部环境的变化。基于先前对磁铁矿中氧空位形成能随局部电荷和自旋序变化的DFT计算,在分析铁 - 氧双空位之前,我们将此分析扩展到包括八面体铁空位。我们还通过比较铁 - 氧双空位与单个空位的形成能来评估其相对稳定性。我们的研究结果揭示了形成双空位团簇的显著能量驱动力,特别是在磁铁矿中,在氧化条件下,+1电荷态的双空位表现出与中性铁空位相当的形成能。在赤铁矿中,结果表明氧空位与铁空位结合的强烈倾向。这些结果突出了铁 - 氧空位复合体在铁氧化物输运性质中的重要性,尤其与辐照条件下的扩散机制相关。